
Review of Population 
Genetics Equations 

 
 
1. Hardy-Weinberg Equation:  
 

p2 + 2pq + q2 = 1  
 
Derivation: Take a gene with two alleles; call them A and a. (Dominance doesn’t matter 
for our purposes; this works equally well with codominance or incomplete dominance.) 
In a population, some members will have the AA genotype, some will have the Aa 
genotype, and some will have aa.  
 
Now, imagine that you can somehow take all the gametes produced by the members of 
the population—for simplicity, we’ll assume that these are eggs and sperm. Some 
gametes, of course, carry A, and some a.  
 

p = freq (A) 
q = freq (a)  

 
NOTICE that: the frequency of an allele is equal to the probability that a randomly 
chosen gamete will be carrying that allele. Also notice that p+q=1.  
 
What’s the chance that an egg and sperm drawn randomly will both be carrying A?  
Obviously, it’s p × p, or p2. And the chance that both gametes will both bear a is q ×  q, 
or q2. There are two other possibilities: sperm with A and egg with a, or sperm with a and 
egg with A. The chance of either one happening is p × q, and the total probability of 
producing a zygote with the Aa genotype is twice that: 2pq. All of these probabilities 
sum to 1. So p2 + 2pq + q2= 1. [Since p+q=1, (p+q)2 = p2 + 2pq + q2 = 12 =1.]  
 
WHO CARES? It’s like this: this equation links allele frequency to genotype frequency, 
assuming certain conditions are met. This means that:  
 
1) If you know allele frequencies, you can predict the genotype frequencies, and compare 
them with the actual frequencies. If they don’t match, then one of your assumptions is 
violated—maybe there is natural selection going on, or immigration, or non-random 
mating. . . 
 
2) If you know genotype frequencies, you can predict allele frequencies, and compare 
them with the actual frequencies. Again, if they don’t match, then one of your 
assumptions is violated. 
 
3) If you know phenotype frequencies, then you can estimate genotype and allele 
frequencies—but you can’t test the underlying assumptions.  
 



2. Fitness:  
 

p2wAA + 2pqwAa + q2 waa = w  
 

p2(wAA / w)+ 2pq(wAa / w) + q2 (waa / w) = 1  
 
Derivation: w in general means “fitness”: a measurement of the relative ability 
ofindividuals with a certain genotype to reproduce successfully. wAA, for instance, means 
the relative ability of individuals with the AA genotype to reproduce successfully. w is 
always a number between 0 and 1. Adding ws to the Hardy-Weinberg equation allows 
you to predict the effect of selection on gene and allele frequencies in the next generation.  
 
Take the Hardy-Weinberg equation and multiply each term (the frequency of each 
genotype) by the fitness of that genotype. Add those up and you get the mean fitness, w  
(“w-bar”). Divide through by w, and you get the second equation. Here, each term of the 
equation is multiplied by the fitness of a genotype divided by the mean fitness. If a 
genotype is fitter than average, this quotient is greater than 1, and that genotype will 
increase in frequency in the next generation. If a genotype is less fit than average, the 
quotient is less than 1, and that genotype will decrease in frequency in the next 
generation.  
 
3. Mutation:  
 

qt = qt-1+ up0 - vq0  
Δq = up - vq  

 
Derivation: Imagine that in each generation, allele A mutates to allele a with a frequency 
of u, and that allele a “back-mutates” to A with a frequency of v. Then in each 
generation, q, the frequency of the a allele, increases by a factor of up (the rate of 
mutation of A to a times the frequency of A) and decreases by a factor of vq. These will 
eventually balance each other out, so that Δq = 0 (i.e. allele frequencies don’t change any 
further). When Δq = 0, it must be true that up = vq. From this, with a little algebraic 
jugglery, you can derive the formula  
 

q = u / (u + v)  
 
where q (“q-hat”) is the equilibrium frequency. Similar equations let you derive p.  
 
This isn’t all that useful an equation, however. In real life, mutation rates are usually on 
the order of 10-5 per locus per generation. For example, in humans, the Huntington’s 
chorea mutation spontaneously appears about once in every 200,000 gametes produced. 
This means that mutation, by itself, has very little effect on allele frequencies.  
 



 
 
4. Inbreeding:  
 
freq (AA) = p2 + pqF 
freq (Aa) = 2pq - 2pqF 
freq (aa) = q2 + pqF  
 
Derivation: F is the inbreeding coefficient, and it is the probability that two alleles in a 
diploid zygote are identical by descent—in other words, that they are both descended 
from the same recent ancestor within the population. The effect of inbreeding is to 
increase the frequency of homozygotes and decrease the frequency of heterozygotes. 
These equations show how this effect is quantified.  
 
Given that F is the probability that two alleles are identical by descent, what is the 
probability that a given genotype will be AA? There are two ways in which a genotype 
can be AA. First, one of the parental gametes could be carrying A and the other could be 
identical by descent; the probability of this happening is p ×  F. The other possibility is 
that one gamete could have the A allele, the other gamete could have the A allele, and the 
two alleles are not identical by descent. The probability of that being the case is p ×  p ×  
(1-F), since if F is the probability of two alleles being identical by descent, 1-F is the 
probability of two alleles not being identical by descent. So the total probability of a 
given genotype being AA is the sum of these two: pF + p2(1-F). We can expand that to 
pF + p2 – p2F, rearrange to p2 + pF – p2F, and regroup to p2 + pF(1-p). 1-p, of course, is 
q, so the formula for the frequency of the AA genotype is p2 + pqF. You can work out 
the other two formulas in much the same way. 
 
One way to use this formula is to calculate F; if you know p and q for a population, and 
you know the actual frequency of, say, the AA genotype, you can plug those numbers in 
and calculate F. If there is no inbreeding, F = 0, and you have the basic Hardy-Weinberg 
equilibrium; if F = 1, you have a completely inbred population with no heterozygotes at 
all. To give a concrete example: if you had a population in which only full siblings mated 
with each other, after ten generations F would be about 0.85.  
 
5. Effective Population Size: 
 
     Here’s the general idea: Factors like genetic drift (see below) depend on population 
size. But the census size of a population—the raw number of members—may not tell you 
what’s really going on. In a population of living things, some members may not be 
reproducing (because they’re too young or too old, because there’s an excess of males or 
females, because a few “privileged” males mate with multiple females. . . etc. etc.) The 
effective population size is the size of a hypothetical ideal population, all of whose 
members have an equal probability of breeding, that has as much inbreeding and genetic 
drift as the real population. 
      Exactly how you calculate this depends a lot on the situation and can be a little tricky, 
but here’s a sample: In a population of diploid individuals with separate sexes, Ne, the 



effective population size, is equal to (4NfNm) / (Nf + Nm), where Nf is the number of 
females and Nm is the number of males. If Nf and Nm are equal, then Ne reduces to Nf + 
Nm, which is just N (the actual population size). But suppose that this population is 
dominated by a single alpha male who does all the breeding (which is close to what 
happens in some animals, such as elephant seals). Then Nm = 1, and the formula becomes 
Ne = 4Nf / (Nf + 1). 
    So if you have a population of 100 elephant seals, 50 males and 50 females, N = 100, 
but Ne = 200/51 = 3.9. In other words, a population of 100 elephant seals in which only 
one male mates will have as much genetic drift and inbreeding as a population of four 
elephant seals in which all members could mate! This has a lot of implications for 
conservation and breeding programs. 
 
6. Genetic Drift 
 

Vq = p0q0/2N 
 
where Vq is the variance in the allele frequencies after one generation, Ne is the effective 
population size, and p0 and q0 are the allele frequencies that you started with. The 
variance of any set of numbers is a measure of how “spread out” the numbers are; to be 
more exact, it’s the sum of the differences between each number and the mean of the set. 
The square root of the variance is the standard deviation, which you might be more 
familiar with.



 
7. Narrow-Sense Heritability:  
 

h2 = slope of least-squares regression of mean offspring phenotype on mean 
parental phenotype  

 
Derivation: Use this when you’re dealing with a continuous trait—height, weight, color, 
number of parts, etc., as long as it can be quantified by integers or real numbers—rather 
than a simple Mendelian dominant/recessive trait. For each pair of parents, find the mean 
of the trait; for each set of offspring, find the mean value of the trait. Then graph parental 
means vs. offspring means on a Cartesian graph, and take the slope of the regression line 
through the set of points. If the slope is nearly 0, then parental traits have nothing to do 
with what’s seen in the offspring; if the slope is close to 1, then parental traits and 
offspring traits are tightly correlated.  
 
BIG DISCLAIMER: The trait doesn’t have to be genetically controlled AT ALL for this 
to work! Poverty, for example, would show a strong narrow-sense heritability (children 
from rich families are usually rich themselves, children of poor families often stay poor). 
So would religious affiliation (with some exceptions, children usually adopt the religion 
of theirparents). But there are no “poverty genes”, or “Baptist genes”.  
 
8. Response to Selection for a Continuous Trait:  
 

R = h2S  
 
Derivation: For a continuous trait, calculate the mean phenotype of the first generation (t) 
and the mean phenotype of the second generation after a round of selection (t*). The 
difference between the two is S, the selection differential for a continuous trait. 
 

S = t* - t  
 
S multiplied by the narrow-sense heritability, h2, is the response to selection, R. This is a  
prediction of how a population will respond to directional selection on a continuous trait.  

 


