MATH 4340 - Numerical Methods
 Homework 7.1 - Quadrature Rules Due - Tuesday, October 6, 2015

Use these two integrals for each of the problems given below

$$
\int_{0}^{1}\left(1+e^{-x} \cos (4 x)\right) d x \quad \int_{0}^{1} \sin (\sqrt{x}) d x
$$

(Note: Problems 1-5 are reworded problems from the textbook by Mathews and Fink.)

1. Use the trapezoid rule with $h=1$ (or 1 interval) to estimate the value of each of the integrals.
2. Use Simpson's rule with $h=1 / 2$ (or 2 intervals) to estimate the value of each of the integrals.
3. Use Simpson's $3 / 8$'s rule with $h=1 / 3$ (or 3 intervals) to estimate the value of each of the integrals.
4. Use Boole's rule with $h=1 / 4$ (or 4 intervals) to estimate the value of each of the integrals.
5. Use the trapezoid rule, Simpson's rule and Boole's rule to estimate the value of each of the integrals using $h=1 / 4$. Note that you have already performed the Boole's rule calculation in problem 4. To perform the trapezoid rule calculation, you will need to apply the trapezoid rule 4 times, once to each of the following intervals $[0,1 / 4],[1 / 4,1 / 2],[1 / 2,3 / 4]$ and $[3 / 4,1]$. Similarly, for the Simpson's rule, you will need to apply it to the intervals $[0,1 / 2]$ and $[1 / 2,1]$, in order to use $h=1 / 4$.
6. Determine the degree of precision for the midpoint rule which is given below:

$$
\int_{x_{0}}^{x_{0}+h} f(x) d x \approx h f\left(x_{0}+h / 2\right)
$$

And determine the error term associated with this integration formula.
7. Determine the degree of precision for the following rule which is called the two-point Gauss quadrature rule:

$$
\int_{-1}^{1} f(x) d x \approx(f(-1 / \sqrt{3})+f(1 / \sqrt{3}))
$$

Its precision is much higher than the trapezoid rule.

