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A computationally efficient, gradient-based design optimization methodology is
applied to high-velocity open-channel flow via an existing two-dimensional, finite ele-
ment open-channel simulation code. For a given open-channel design, the flow through
the channel is numerically approximated using the flow solver. Using the steady-state
flow variables, the quality of the open-channel design is determined by a nonlinear
least-squares objective function that measures the non-uniformity of the flow depths
for a region within the channel. The gradient of this objective function with respect
to the design variables is estimated accurately and efficiently via discrete sensitivity
analysis, removing the computational cost of multiple steady-state simulations per
design iteration. The gradient information is used via a modified Gauss-Newton op-
timization algorithm to update the design variables to achieve rapid convergence to
an optimal design. To demonstrate its robustness and computational efficiency, this
design optimization strategy is applied without any modifications to the design of

channel contractions, expansions, bends and embedded bodies.
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