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B-Spline curves and surfaces are widely used by CAD systemse tepresent physical models and from
which grids can be built for computational fluid dynamics simulations. These B-Spline entities can also be
used in conjunction with flow solvers either to represent fetures in the solution or to discretize the governing
equations. In this paper, the primary use of B-Splines is to epresent the free surface about viscous hulls in
conjunction with the generation quality viscous grids. After developing the tools for such a representation,
B-Splines are used to develop a finite element framework usgnthe basis functions for the B-Spline surfaces as
the weight and interpolating functions. The evaluation of he resulting integral is simplified because the spatial
derivatives of the B-Spline surfaces can be calculated exti¢ These codes are tested on a set of algebraic
cases where exact agreement is possible and then for actuedd surfaces generated from a submerged three-
dimensional hydrofoil, for the Wigley parabolic hullform and for the prototypical naval destroyer DTMB
Model 5415 hullform.

Nomenclature

t Parametee [0, 1]

C(t) B-Spline Curve

k Degree

i Index for Control Points

n+1 Number of Control Points

P, Control Point

N; (1) Basis Function

Pr(t) Iterative Control Points at Level
(u,v) Parameter for Surface [0, 1] x [0, 1]
Bu,v) B-Spline Surface

d; ; Control Points in Surface

N, (u),N;(v)  Basis Functions for Surface

T,Y, 2 Spatial Components

Z,7, 2 Locations on B-Spline Surface
(ur,vr) Parameters for nodein Unstructured Grid
p.q Finite Element Weight Function

U= (U V,W) Velocity Field
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[. Introduction

B-Spline curves and surfaces have some intriguing pragsettiat can be applied to the solution of partial differ-
ential equations and the examination and analysis of thereswithin the solution. One such property is that the
smoothness of the B-Spline curve or surface is controllethbyknot vector and the degree of the B-Spline entity.
Hence, smoothing the solution of a partial differential &ipn or the features within a solution occurs naturally whe
approximating via a B-Spline entity. This characterissiof particular interest for free surface tracking simulas
around ships, where the grid must be moved to match the frégcsu If the free surface has high-frequency oscilla-
tions or noise, then the grid quality from a flow solver pectjwe will be quite poor when the grid is moved to match
the free surface, as is shown in Figure 1. In practice, the $lolwer will often become unstable if the grid at the free
surface has this level of roughness. This high frequencsencén be significantly reduced by Laplacian smoothing of
the free surface elevations, but it can be completely ekeid by representing the free surface as a smooth B-Spline
surface, and the stability of the solution on the grid praatliy the grid movement process is improved. Burg etal
has used this smoothing characteristic, as well as theenhability to symmetrize a B-Spline surface, to improve the
grid quality for their free surface algorithm, especialty flows with transom sters.

Original Grid

Grid Moved to
Match Highly
Oscillating
Free Surface

Figure 1. Example of Grid Distortion due to Free Surface.

Another benefit of representing the free surface as a B-Splinface is the ability to use this B-Spline surface in the
grid generation process. NURBS and B-Spline curves andaesfare native CAD types and can be easily imported
into most geometry manipulation packages. For structurielcbgnerators, the volume grid can then be created around
the curved initial free surface just as easily as if it werdanar surface. For unstructured grid generators, such as
AFLR3*, any non-viscous surface that intersects the viscousarfaist be planar, so that the prismatic boundary
layer can terminate cleanly in the free surface which is tivéase at the top of Figure 2. The quadrilateral elements
near the viscous surfaces on the upper right are the boutadaayelements. The boundary layer elements, which are
typically prisms, are generated by starting at the viscoufase using a point spacing consistent with the Reynolds
number and grow in thickness outward from the viscous sarfgor fully enclosed objects such as a submarine or an
airplane, the boundary layer wraps completely around thecgtbut for surface vessels, the boundary layer intessect
the free surface.

T = v

Figure 2. Viscous Grid Terminating into Free Surface.

If the free surface were represented by a general curvedcgiaind not a B-Spline or NURBS surface, the bound-
ary layer could not terminate appropriately. However, ifiéire represented by a mathematically defined surface such
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as a B-Spline surface, then that surface could be transtbime a planar surface for the boundary layer grid gener-
ation step, and reverted back to the curved surface, fortimainder of the grid generation and quality improvement
steps. The first step is to generate a reasonable approaimatthe free surface, as determined from previous simu-
lations, experimental results or expectations, which @shas the expected free surface in Figure 3. Then, this guess
for the free surface is approximated as a B-Spline repratientvia the algorithm presented herein. The free surface i
the region of interest is replaced with this B-Spline repraation, which is a mathematically defined surface. Hence,
when the volume grid is built, the grid generator uses thepBag definition to deform the surface grid in the region
of the interest, so that the free surface is now planar, aadigtous surfaces are adjusted via the same definition as
is shown in Figure 4. Since the free surface is planar, a goadity prismatic boundary layer grid can be built, that
terminates cleanly into the free surface. After the boupdtarer grid is built, the grid generator moves the surface
and the grid back to its original shape via the inverse Brepiiansformation, the isotropic (tetrahedral) grid idtbui
and quality improvements are made.

Expected Free Surface

B-Spline Approx.
Figure 3. Initial Guess for Free Surface and B-Spline Appration.

This process has been used in conjunction with a less sayatexd B-Spline approximation algorithm, for grids
around a prototypical naval destroyer DTMB Model 5415 fuuhfi. This type of vessel has a transom stern, which
is similar to the stern of a row boat rather than of a canoe wtd@pers to a point. In the region of the transom stern,
the free surface may either remain attached to the transemm, sfr it may come off the bottom of the hull cleanly. In
the former case, a planar free surface can be deformed tdtetdree surface, as is shown in numerous papets
However, if the ship is traveling fast enough that the fredamie comes cleanly off the bottom of the hull, then the
grid must be built using a curved free surface. The algoritescribed above and in Figures 2 and 3 was developed
to handle this specific case, but it can also be used for ofpestof problems.

Planar Free Surface

Hull Distorted by B-Spline

Figure 4. Deformed Surfaces Based on B-Spline Approximatio

Finally, one of the most intriguing properties of B-Splingfaces is that their spatial derivatives can be calculated
exactly. Since they are smooth functions with exact mattiealalefinition, their derivatives can be calculated up to
the degree of the B-Spline. Hence, many of the terms withiaréig differential equation can be expressed exactly.
Using these B-Spline curves and surfaces within a finite elgnframework, a novel approach to solving partial
differential equations can be derived. If the solution te BDE is smooth, then the B-Spline representation of the
solution should be reasonably accurate. However, in regiath large variations in the solution variables, such as
hydraulic shocks, the representation may smear the spltdmmuch. Using the same tools that were developed to
approximate a set of points as a B-Spline surface, a finitaai solver of the kinematic free surface equation was
developed and will be presented herein.

The approach of using B-Spline surfaces within a finite elgframework to solve systems of partial differential
equations is not a new idea. Gardner, etalised cubic B-Splines within a Galerkin finite element mdttoosolve the
regularized long wave equation. They were able to demdestiathematically that their scheme was unconditionally
stable. Ali, etal, used the B-Spline finite element method (BSPFEM) to soleenthnlinear Burgers equation. They
also showed that a Crank-Nicholson scheme for these eqgatias unconditionally stable. In a more closely related
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work, Verma? investigated the use of a quadratic B-Spline finite elemeathod to solve free surface problems for
two-dimensional flows, which have a one-dimensional fretase.

In the next section, the relevant aspects of B-Spline cuanessurfaces are reviewed. Then the method that was
used to form the mapping between the location of the noddinmstructured grid and the parametric values in the
B-Spline surface is presented. In the following sectioa,algorithm that was used to approximate a set of data points
into a B-Spline surface is described and results are givethe final section, the algorithm used to solve the kinematic
free surface equation is presented, followed by the results

[I. B-SPLINE ESSENTIALS

A B-Spline curve of degreé with a set ofn + 1 control pointsPy, P, ... P, and knot vectoty, t1, ..., tn1x Of
nondecreasing sequence of values wjtk [0, 1] is defined as a weighted average of basis functignstimes each
control point via the following formula:

C(t)=> Nix(t)P; (1)
1=0
where the basis functions; ;, are determined iteratively from
(t—t:) (tivr — 1)
Nikw(t) = ————N; p_1(t) + —————N; _1(t 2
#(0) (tiskr — 1) " 1) (tive —tirr) 0" () @)

with termination criterion that

1 fort; <t <tijyq,
Nia(t) = _ i 3
0 otherwise.

The de Boor algorithm is a recursive means for evaluatindg#8pline curve at a particular locatigrin the knot
vector, wheré € [t;, ;1) andP?(t) = P,. Then, the value of the curv@(t) is defined by recursively evaluating the
following formula:

t; -1 t—1t;—
Pr(t) =— z+k+T_ . Plr_fll . 1_1. Pir71 (4)
tz+k+r t’L*l t1+k+r t’L*l

and settingC(t) = PX(t). This algorithm is described in full detail in Fafih This recursive algorithm is a more
efficient means for evaluating the function than evaluatiagh of the basis functions; , for each different location
in the knot vector. However, if the B-Spline curve is to beaaiedly evaluated using the same location in the knot
vector, then it is more efficient to calculate and store thgisbunctions, and reuse these basis functions for the
evaluation of the different curves and surfaces, diredgdyeguation (1). To evaluate these basis functions, the de Bo
algorithm can be used by setting all of the control points,texgept for the control point for the basis function being
evaluated, which is set to 1.

One of the properties of Bezier, B-Spline and NURBS curvesanfaces is that the derivative of the curve with
represent to the parameteran be calculated exactly, as

%it) =Y Nipa ()P, (5)
=1

using the derivative control poinf3' which are defined as

P = P — P ()
tivk—1 —ti—1
Equivalently, the derivative of the B-Spline curve can btedwrined by modifying the basis functions, or
dO(t) = ONii(t)
dt Z ot Fi 0

i=1
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where
ON, (1) 0 if k=1,

= AN, (t) ON; ) 8
ot Ni k- ](t)tjl(,i 215 )% _ Nlekil(t)tff:—k;z% otherwise . ®)

Evaluating the derivative using Equation (5) is more effitiéthe derivative will be evaluated at various locations
in the curve using the same control points, but using Equdf®is more efficient if the locations for the evaluation
do not change but the value of the control points do changes, the case for the algorithms developed herein. By
evaluating the B-Spline curves and surfaces in the moraeffimanner, the computational cost for several of these
algorithms is reduced by an order of magnitude.

Another type of derivative that will be used herein is theigsive of the B-Spline curve with respect to the
control points, orac(t These derivatives result in the basis functions as is stmlow. Again, since the parametric
locations are flxed these derivatives need to be calcutatlgdonce and then are stored.

lel0)
op;

Now that the basics for a B-Spline curve have been presethtedormulation of B-Spline surfaces are presented.
These surfaces are evaluated in the same manner as the atev@&luated, as well as their derivatives. Given a set
of (m + 1) x (n + 1) control pointsd;_;, two different degreek and!, and two different knot vectary, w1, ..., Um+x
of nondecreasing sequence of values withe [0, 1] andvg, vy, ..., v,+; Of nondecreasing sequence of values with
v; € [0, 1], a B-Spline surface can be built using two parameteaadv, via a product of B-Spline curves, or

= N; 1 (2) ©)

Bu,v) =Y [Nig(w) | Y Njui(v)di (10)
i=0 =0

where the basis functiors; ,(v) andN; ;(v) are defined as above.
Within the following derivations, two different derivatig will be needed - the derivative of the B-Spline surface
with respect to the parametersindv and the derivative of the surface with respect to the copiaitsd, ;. Clearly,

the derivative of the B-Spline surface with respectitg is only dependent on the basis functions and hence can be
determined once and then stored, or
0B(u,v)

6dm— = Ni7k(u)Nj,l(U) (11)
Following the derivation given above, the derivative widlspect to the parameteiis
OB(u,v) ~— 3]\71 k(
Y Z e (12)

where the derivative of the basis function mimics Equat® The derivative of the B-Spline surface with respect to
the parameter is defined in an analogous fashion.

Finally, to represent a surface in 3D space, a point on thiasa given by the parametefs, v) is given by the
triplet (z(u,v), y(u, v), z(u, v)) where each coordinate is given by a set of control pointsitexamples presented
herein, the x and z-coordinates are determined by an O-gadectilinear structured grids, and the y-coordinates are
determined by the elevation of the free surface or by thecigifield associated with the free surface.

In order to calculate the derivativ% and%, which are needed for the kinematic free surface solverchiaén
rule is applied to each term to get the following matrix rielaship:

9y du  Ov| |9y
Oy = |ow oul |ou (13)
0z 0z 0z v
The terms% and% can be calculated from expressions given above, such asi@u(d2). But, the terms in the

matrix are not defined above. By using the chain rule, it cagasly shown that this matrix can be defined as is shown
below, completing the definition of these derivatives.

ou v ox 921"
Ox ox ou ou
ou ov| = |0z 0z (14)
0z 0z ov ov
5 of 14

American Institute of Aeronautics and Astronautics



lll. TAGGING THE NODES

Given a two-dimensional unstructured grid or set of datanzoio be fit with an approximating surface and a
two-dimensional structured B-Spline surface, wherextlaadz control points are fixed, a mapping between thgez)
coordinates of each point in the unstructured grid and itarpatric values within the B-Spline surface needs to be
established. In this derivation, the y-coordinates forBa8pline surface are the unknowns. Gardner, etal [7,8,9],
developed a method where the X, y and z-control points weranknowns, allowing for greater flexibility, but for the
applications presented herein (i.e., free surface flowsratgurface ships), this level of flexibility and computatib
complexity is not required.

Given a B-Spline surface witlh + 1 x n + 1 control points in the XZ plane, the valuesmandz coordinates at
parameter§ < u,v < 1 can be calculated via

Z(u,v) = ZNzk(U) ZNj,l(”)Xiyj
i=0 (15)

Z(u,v) = ZNzk(U) ZNj,l(v)Ziyj
i=0 '

whereX; ; andZ; ; are thexr andz control points. For a node in the unstructured grid or a pioitiie set of data
points P, = (a4, 2¢), the parameter valuds:;, v;) need to calculated such that = & (u,v¢) andz; = Z(us, v4).
Given an initial guessug,vo), define the difference between the coordinates defined bygilness and the target
coordinates as
(dz,dz)T = (&(uo, vo) — x4, Z(uo, vo) — 2)T (16)

Since the goal is to driv@izx, dz) to (0, 0), Newton’s method is an appropriate algorithm, which can bigen as

u _|u I EET ’ dzr (17)
v new v old o 2o dz

wherez,,, ., z., 2, represent the derivatives ¢f (u, v), Z(u, v)) with respect to the parametric coordinatesv).
These derivatives can be evaluated via equation (5). Thrigthm is continued until the magnitude of the vector
(dz,dz)T is below some tolerance.

Appropriate restrictions are needed to ensure that thevpsea locationgu, v) ., lie within the domain0, 1] x
[0, 1]. Additionally, if the grid is an O-grid or C-grid, then otherodifications are needed along the re-entrant bound-
aries, if the new parameter location crosses over the boigsda

Finally, to make this algorithm robust and efficient, a gownitial guess is needed. An average of the parametric
values for the neighboring nodes, whose values are alreolyrk serves an excellent choice. To take advantage of
this observation, the order in which the parametric valdés@®nodes is calculated should be slightly modified.

» Nodes with known parametric values.

o Nodes in list.
[ Nodes added to list.

Figure 5. Efficient Tagging of Nodes.
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After calculating the value of the first node in the unstruetugrid, using an initial guess of (0.5,0.5), the nodes
connected to that node are placed in a list. The first nodastishis chosen as the next node whose mappings is to be
determined. Taking the average of the parametric valugssfoeighboring nodes that have already been determined
as the initial guess, the parametric values for this nodeierchined via the above algorithm, then the neighboring
nodes for this node are added to the list, unless they aradsliia the list. The next node in the list is chosen, and the
search is continued. This algorithm is depicted in Figur€tis modified ordering greatly improves the efficiency of
the process of tagging the nodes, due to the reduction inutmdar of iterations needed for each node.

IV. B-SPLINE APPROXIMATER

In this section, the method used to approximate a surfaceetkfiia the elevations of the y-coordinates in a three-
dimensional unstructured surface mesh to a B-Spline ajypading surface is described. This algorithm is described
and then tested on an algebraic test case, where the tarfpatesis exactly attainable by the B-Spline representation
and then tested on the free surface generated about thfeeedtfhullforms. Both rectilinear and O-grids are used for
the underlying B-Spline surface, where appropriate.

A. B-Spline Approximation Algorithm

For each node in the unstructured grid, given by coordin@tesy;, zr), the parametric valuéu;,v;) within the
B-Spline surface has been determined, as described atwoiets (u;, v;) = x;y andz(ur,vr) = z;. Thus, the goal

is determine the control points in the y-coordinate di@tthat minimize the error between the B-Spline surface in
the y-direction and the y-values at the nodes in the unstredtgrid, as defined by the functiéi(Y; ;) wherey; ; are

the y-value of the control points,

Niodes

F(Yi;) = Z (y(ur,vr) — y1)2 A (18)

1=0

wherey; is the elevation at nodeandyg(uy,vy) is the value of B-Spline surface for the parametric valugv;) as
is defined as

Glu,v) =Y Nig(w) | Y Nju(0)Ys (19)
i=0 j=0
Thus, to minimize this function, the derivative with respiceach control point must be zero, which is
N.
6F(}/Z 7) nodes ag(ul’ U]) ~
oY, > oy, @ en) =) (20)
: =0 :

The term%i’;”) reduces to the basis functid¥y,, k(u;) Ny, [(vr) so that equation (20) becomes

Nrodes

Y Npw(wr)Noa(vr) (§ur, vr) = yr) A =0 (21)
I=0

If the goal is to minimize the functioAg(u, v) which is a continuous function representing the differdretgveen
the B-Spline surfacg(u, v) and the target free surface, the Galerkin finite elementddation is

[ ératu0)ditu,vae =0 )
Q

Evaluating this integral at each nodal locatien, v;) within the unstructured grid, this integral can be disaedias

Niodes

Z bpq(ur,vr)AyrAg (23)
=0

whereAy; = g(ur,vr) — yr and Ay is the area of the control volume associated with each do&y choosingp, ,
to be the B-Spline basis functioi§,, k(u) Ny, [(v), these formula are equivalent.
These equations are solved in iterative form, uding — GM RES [9].
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B. Void Space

For surface vessels that intersect the water surface, teeanof the ship (i.e., the void space) has no influence on
the free surface, and the free surface has no influence orottieotpoints of the B-Spline surface which lie within
the void space. Thus, another means must be developed &ndeing these control points, in order for the surface
to vary smoothly throughout the void space. Distance weidaveraging based on theandZ control points of the
B-Spline mesh was used to blend fHiecontrol points values at the edge of the void space.

V. Validation of B-Spline Approximation Algorithm

A. Algebraic Test Case

In order to test the B-Spline approximation algorithm, agebkaic test case was contrived that would admit an exact
B-Spline solution. An algebraic function was chosen to pevthe target B-Spline control points. Thé control
points were evaluated using this algebraic function. Utliege target control points, the elevations in an unstradtu
square grid were calculated via the B-Spline definition aocksl as the target elevatiol’s. The target elevations are

shown in Figure 6.

Figure 6. Target Elevations for Algebraic Case.

Both an O-Grid and a rectilinear B-Spline grid were used tmnstruct the surface. The unstructured grid con-
sisted of 56,535 nodes, while the O-grid wzs x 50 and the rectilinear grid wa20 x 20. For the O-Grid case,
the approximation algorithm was able to reconstructheontrol points of the B-Spline surface to three orders of
magnitude as is shown in Figure 7; and for the rectilineage ctie® approximation algorithm reconstructed the surface
to machine precision as presented in Figure 8. The reasahdadegradation in the reconstruction for the O-grid
deals with the boundary condition across the singularitg.liA typical O-grid used for the B-Spline approximation
algorithm is shown in Figure 9. Often O-grids are used to fiesinaround an airfoil or some other object in the center
of the grid; for this application, no such object is presaititich means that the center of the grid is a degenerate curve,
which must be treated in a special fashion. The reason th@tgnd is used rather than a rectilinear grids is that the
points for the O-grid can be clustered near the hull of thp.shi

Figure 7. Error for Algebraic Case Using O-Grid.
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Figure 9. Typical O-Grid.

B. Physically Realistic Cases

The results for the physically realistic cases show thaBit®&pline approximation algorithm can adequately recon-
struct the general features of the free surface. Howevertathe inherent smoothing that occurs for B-Spline curves,
the accuracy of the reconstruction will be less in regionkafe variation in the free surface. By using an O-grid,
which will allow for more control points near the hull wheteetfree surface is varying the most, the accuracy of the
representation is improved. The size of the B-Spline sedamnd the number of nodes in the unstructured surface
grids are shown in Table 1. The ratio of the number of nodekerunstructured grid to the number of control points
is approximately 10 to 1, showing that the number of unknowsggnificantly reduced in this procedure.

Case B-Spline Grid Nodes in
Control Pts Type Surface

3D Hydrofoil 30 x 81 O-grid 27,543
3D Hydrofoil 49 x 76 Rectilinear| 27,543
Wigley Hull 40 x 101 O-grid 68,874

DTMB 5415 | 69 x 109 O-grid 83,292
Table 1. Grid Sizes for Test Cases.

The first physically realistic case deals with a propriethmnge-dimensional hydrofoil, for which we completed
a viscous free surface simulation several years ago. Shmchytdrofoil is fully-submerged and since it was a three-
dimensional flow field, this case was a good next step for therdihm. The target elevations are provided in Figure
10, with the flow from left to right and the submerged hydrbjast below the white region of the free surface. At
the boundary of the domain, the elevations are not zerogpwadfh the B-Spline approximation algorithm fixes the
boundaries to zero. This difference is apparent in Figudearid 12 which show the error between the B-Spline
surface and the target surface for an O-grid and a rectiliggd. The errors exist in four different locations: above
the hydrofoil where the free surface variation is the gretatdong the centerline, at the side boundaries shown on the
top and the bottom of the images, and at the outflow boundangahe right of the image. The first type of error
is due to the inherent smoothing when using B-Spline curmessairfaces and is expected. The second type, which
deals with the error along the centerline or symmetry plamuch more noticeable for the O-grid which treats the
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centerline as a flattened circle. This error is due to thereafaent of continuity across this centerline, and for tgpic
monohull surface vessels, this flattened circle will liehiritthe void space of the monohull. The third error at the side
boundaries is caused by the fact that the B-Spline surfapects the free surface to be zero along these boundaries
when they are not.

The fourth type of error, which is at the outflow boundary,i®edo both the non-zero free surface at the outflow
plane and due to the coarseness of the grid relative to thgliBeSsurface mesh. From our experience with approxi-
mating free surface elevations on unstructured grids tpii&s, if the unstructured grid is too coarse relative ® th
B-Spline mesh, then the B-Spline surface is oscillatoryhiait region. Hence, if there are too few nodes within the
domain of influence of a control point, then the B-Spline agpnation algorithm generates erroneous oscillations
due to the numerics of the algorithm. This behavior was éafhgseen in the rectilinear grids at the outer boundaries
where the unstructured grid is less refined.

Qe

0.02

Figure 10. Target Elevations for 3D Hydrofoil.

L

Figure 11. Error for 3D Hydrofoil Using Rectilinear Grid.

Figure 12. Error for 3D Hydrofoil Using O-Grid.

The second realistic case is the free surface around a ppatat naval destroyer class hullform called the DTMB
Model 5415 hull. This ship has a bulbous bow and the transemm sfThe transom stern is the region of particular
interest because at slow speeds the transom stern is felfgavbut at high speeds the transom stern is dry. If it is
fully-wetted, then the grid at the free surface can be plhaeis gradually moved to match the free surface. However,
if the transom stern is dry or only partially wetted, thenghnigl in the stern region must be built to match the expected
free surface, which is the motivation for this research.

The free surface elevations about the DTMB Model 5415 at #fieowmber of 0.28 is shown in Figure 13. For this
case, the free surface disturbances reach the top and bottondaries as well as the outflow boundary to the right of
the image. The computed elevations are shown in Figure 14retch the target free surface excellently. There are
some differences at the bow of the ship and some minor difte®in the stern region, but overall the agreement is
superb. The errors are shown in Figure 15 and are consistémthe explanations for the Wigley hullform and for the
submerged hydrofoil. The scale for Figure 15 is significadtfferent from the scale for Figures 13 and 14, so that
the error between the target and the computed elevationsecaeen more clearly.
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Figure 14. Computed Elevations for DTMB 5415.

Figure 15. Error for DTMB 5415.

VI. B-Spline Free Surface Solver

The B-Spline free surface solver moves the control pointstfe B-Spline surface in conjunction with the partial

differential equation governing the solution of the freeface (i.e., the kinematic condition), or

9y , .9 Ay

LU _vew= = 24

ot "V TG, 24)
Hence, the inputs to the solver are the old free surface agmoints and the velocity/ = (U, V,W) at each node in
the unstructured grid, and the solver outputs new free seidantrol points that optimize the solution to this equatio
via a finite element discretization. In particular, the wifunctions and the basis functions for the finite element
discretization are the same as the B-Spline basis functiéns(u)N; ;(v). The equation associated with the control
pointY,, , is obtaining by multiplying the governing equation by theisdunctionNy, , (u) Ny i (v) or

ag 6~N+1 (<)~N+1
/QN,,CNJ<E+U VW )dQ_O (25)

whereN is the time level an@ is the domain for the B-Spline surface. By making the sulpsin, Ag = V1 — gV
and using the assumption th%t At , then this equation becomes

j o OAGNT DAGN+! B / Aj 0N oy
/NJCN,( FUS g VAW == | Ny, At+U8 V+W8 o
(26)
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where the unknowns arky and are defined as

Aj(u,v) = Nig(w) | Y Nju() [V = vi, jV] (27)
i=0 j=0

Equation (26) was discretized by evaluating each integaah\quadrature that uses the information at the nodes of the
unstructured grid, similar to the discretization used far B-Spline approximater. It should be noted that the spatia
derivatives on the right-hand-side of the equation can ladueted exactly by using the derivatives of the B-Spline
surface and that the weights associated with the unknownbeaalculated exactly, since they are just combinations
of the B-Spline basis functions, as discussed in a previectios). These equations were similarly solved in iterative
form, using DQ-GMRES.

A. Physically Realistic Cases

The two physically realistic cases analyzed using the Ba8pree surface solver were the submerged hydrofoil
and the Wigley hull. The error for the submerged hydrofoisfi®wn in Figure 17. The error is symmetric since
the velocities generated by the RANS flow solver were symimatiout the symmetric hydrofoil. The error at the
outer boundaries is associated with the under-resolufitimeounstructured grid as well as the incompatibility in the
boundary conditions at the outer boundary. The B-Splinessdbrces the free surface to zero at these boundaries, but
the velocity field is not consistent with this assumption.

Figure 17. Error for 3D Hydrofoil.

The second physically realistic case deals with the frelseraround the Wigley hullform. The Wigley hull is a
parabolic surface for which extensive experimental andemigal data have been generated and as such is a typical
validation case for free surface flow simulations. Becahsé/igley hull crosses the waterline, there is a void space
in the middle of the geometry where the free surface doesxist; @and the B-Spline control points for the void space
must be determined using the alternate algorithm descebede.

The free surface for the flow at Froude number 0.289 is shoviAigare 18, with the flow from left to right. The
free surface at the left, top and bottom boundaries of thg@aae close to zero, since the free surface disturbances did
not reach these boundaries. The difference between thdiBeSpproximation and the target free surface is shown
in Figure 19. Since the free surface is close to zero alon@tmpbottom boundaries, there is no appreciable error
along these boundaries. There is error near the Wigley ésiiecially near the bow and stern of the hull, due to the
smoothing effects of the B-Spline representation.

”

Pt
\b(
S AN

0.015

Figure 18. Target Elevations for Wigley Hull.

12 of 14

American Institute of Aeronautics and Astronautics



Figure 19. Error for Wigley Hull.

VII. Conclusion

Algorithms for using B-Spline surfaces to represent a frgéase for physically realistic geometries and to solve
for the free surface for these geometries have been presemteese algorithms can be viewed within the context
of the Galerkin finite element method, and for algebraic saadere the exact solution is realizable, the algorithms
were able to converge to the target solution. For the sinwlatwhere the free surface and the velocity field were
generated by solving for the flow around a ship’s hull, thegthms were able to capture the pertinent features well,
smoothing the results, in an advantageous fashion. Unfarély, the free surface and the velocity field at the edges
of the B-Spline surface were not consistent with an undig&difree surface, so that the boundary conditions for the
B-Spline approximater and the B-Spline free surface sokere erroneous. Nonetheless, near the hull, the B-Spline
representations were quite accurate.

Future work includes incorporating these algorithms waitthie grid generator AFLR3 and within the unstructured
flow solverU2NCLE, as well as improving the boundary conditions, as statesi@bkhis type of algorithm has been
successfully used to generate viscous unstructured grided transom stern of the DTMB Model 5415 geometry as
well as for the DDG-51 hullform, when the stern flap is pres@iven the current viscous unstructured grid generation
algorithms, this grid generation approach using a B-Splipeesentation for the free surface provides a useful nptio
for building high quality viscous grids. Continued testeugd application of these algorithms for realistic geonestri
is expected.
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