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B-Spline curves and surfaces are widely used by CAD systems to represent physical models and from
which grids can be built for computational fluid dynamics simulations. These B-Spline entities can also be
used in conjunction with flow solvers either to represent features in the solution or to discretize the governing
equations. In this paper, the primary use of B-Splines is to represent the free surface about viscous hulls in
conjunction with the generation quality viscous grids. After developing the tools for such a representation,
B-Splines are used to develop a finite element framework using the basis functions for the B-Spline surfaces as
the weight and interpolating functions. The evaluation of the resulting integral is simplified because the spatial
derivatives of the B-Spline surfaces can be calculated exactly. These codes are tested on a set of algebraic
cases where exact agreement is possible and then for actual free surfaces generated from a submerged three-
dimensional hydrofoil, for the Wigley parabolic hullform a nd for the prototypical naval destroyer DTMB
Model 5415 hullform.

Nomenclature

t Parameter∈ [0, 1]
C(t) B-Spline Curve
k Degree
i Index for Control Points
n + 1 Number of Control Points
Pi Control Point
Ni,k(t) Basis Function
P r

i (t) Iterative Control Points at Levelr
(u, v) Parameter for Surface∈ [0, 1]× [0, 1]
B(u, v) B-Spline Surface
di,j Control Points in Surface
Ni,k(u), Nj,l(v) Basis Functions for Surface
x, y, z Spatial Components
x̃, ỹ, z̃ Locations on B-Spline Surface
(uI , vI) Parameters for nodeI in Unstructured Grid
φp,q Finite Element Weight Function
Û = (U, V, W ) Velocity Field
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I. Introduction

B-Spline curves and surfaces have some intriguing properties that can be applied to the solution of partial differ-
ential equations and the examination and analysis of the features within the solution. One such property is that the
smoothness of the B-Spline curve or surface is controlled bythe knot vector and the degree of the B-Spline entity.
Hence, smoothing the solution of a partial differential equation or the features within a solution occurs naturally when
approximating via a B-Spline entity. This characteristic is of particular interest for free surface tracking simulations
around ships, where the grid must be moved to match the free surface. If the free surface has high-frequency oscilla-
tions or noise, then the grid quality from a flow solver perspective will be quite poor when the grid is moved to match
the free surface, as is shown in Figure 1. In practice, the flowsolver will often become unstable if the grid at the free
surface has this level of roughness. This high frequency noise can be significantly reduced by Laplacian smoothing of
the free surface elevations, but it can be completely eliminated by representing the free surface as a smooth B-Spline
surface, and the stability of the solution on the grid produced by the grid movement process is improved. Burg, etal1

has used this smoothing characteristic, as well as the inherent ability to symmetrize a B-Spline surface, to improve the
grid quality for their free surface algorithm, especially for flows with transom sterns2,3.

Original Grid

Grid Moved to
Match Highly
Oscillating 
Free Surface

Figure 1. Example of Grid Distortion due to Free Surface.

Another benefit of representing the free surface as a B-Spline surface is the ability to use this B-Spline surface in the
grid generation process. NURBS and B-Spline curves and surfaces are native CAD types and can be easily imported
into most geometry manipulation packages. For structured grid generators, the volume grid can then be created around
the curved initial free surface just as easily as if it were a planar surface. For unstructured grid generators, such as
AFLR34, any non-viscous surface that intersects the viscous surface must be planar, so that the prismatic boundary
layer can terminate cleanly in the free surface which is the surface at the top of Figure 2. The quadrilateral elements
near the viscous surfaces on the upper right are the boundarylayer elements. The boundary layer elements, which are
typically prisms, are generated by starting at the viscous surface using a point spacing consistent with the Reynolds
number and grow in thickness outward from the viscous surface. For fully enclosed objects such as a submarine or an
airplane, the boundary layer wraps completely around the object, but for surface vessels, the boundary layer intersects
the free surface.

Figure 2. Viscous Grid Terminating into Free Surface.

If the free surface were represented by a general curved surface and not a B-Spline or NURBS surface, the bound-
ary layer could not terminate appropriately. However, if itwere represented by a mathematically defined surface such
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as a B-Spline surface, then that surface could be transformed into a planar surface for the boundary layer grid gener-
ation step, and reverted back to the curved surface, for the remainder of the grid generation and quality improvement
steps. The first step is to generate a reasonable approximation to the free surface, as determined from previous simu-
lations, experimental results or expectations, which is shown as the expected free surface in Figure 3. Then, this guess
for the free surface is approximated as a B-Spline representation via the algorithm presented herein. The free surface in
the region of interest is replaced with this B-Spline representation, which is a mathematically defined surface. Hence,
when the volume grid is built, the grid generator uses the B-Spline definition to deform the surface grid in the region
of the interest, so that the free surface is now planar, and the viscous surfaces are adjusted via the same definition as
is shown in Figure 4. Since the free surface is planar, a good quality prismatic boundary layer grid can be built, that
terminates cleanly into the free surface. After the boundary layer grid is built, the grid generator moves the surface
and the grid back to its original shape via the inverse B-Spline transformation, the isotropic (tetrahedral) grid is built,
and quality improvements are made.

Expected Free Surface

B-Spline Approx.

Figure 3. Initial Guess for Free Surface and B-Spline Approximation.

This process has been used in conjunction with a less sophisticated B-Spline approximation algorithm, for grids
around a prototypical naval destroyer DTMB Model 5415 hullform. This type of vessel has a transom stern, which
is similar to the stern of a row boat rather than of a canoe which tapers to a point. In the region of the transom stern,
the free surface may either remain attached to the transom stern, or it may come off the bottom of the hull cleanly. In
the former case, a planar free surface can be deformed to match the free surface, as is shown in numerous papers2,5,6.
However, if the ship is traveling fast enough that the free surface comes cleanly off the bottom of the hull, then the
grid must be built using a curved free surface. The algorithmdescribed above and in Figures 2 and 3 was developed
to handle this specific case, but it can also be used for other types of problems.

Hull Distorted by B-Spline

Planar Free Surface

Figure 4. Deformed Surfaces Based on B-Spline Approximation.

Finally, one of the most intriguing properties of B-Spline surfaces is that their spatial derivatives can be calculated
exactly. Since they are smooth functions with exact mathematical definition, their derivatives can be calculated up to
the degree of the B-Spline. Hence, many of the terms within a partial differential equation can be expressed exactly.
Using these B-Spline curves and surfaces within a finite element framework, a novel approach to solving partial
differential equations can be derived. If the solution to the PDE is smooth, then the B-Spline representation of the
solution should be reasonably accurate. However, in regions with large variations in the solution variables, such as
hydraulic shocks, the representation may smear the solution too much. Using the same tools that were developed to
approximate a set of points as a B-Spline surface, a finite element solver of the kinematic free surface equation was
developed and will be presented herein.

The approach of using B-Spline surfaces within a finite element framework to solve systems of partial differential
equations is not a new idea. Gardner, etal7,8, used cubic B-Splines within a Galerkin finite element method to solve the
regularized long wave equation. They were able to demonstrate mathematically that their scheme was unconditionally
stable. Ali, etal9, used the B-Spline finite element method (BSPFEM) to solve the nonlinear Burgers equation. They
also showed that a Crank-Nicholson scheme for these equations was unconditionally stable. In a more closely related
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work, Verma10 investigated the use of a quadratic B-Spline finite element method to solve free surface problems for
two-dimensional flows, which have a one-dimensional free surface.

In the next section, the relevant aspects of B-Spline curvesand surfaces are reviewed. Then the method that was
used to form the mapping between the location of the nodes in the unstructured grid and the parametric values in the
B-Spline surface is presented. In the following section, the algorithm that was used to approximate a set of data points
into a B-Spline surface is described and results are given. In the final section, the algorithm used to solve the kinematic
free surface equation is presented, followed by the results.

II. B-SPLINE ESSENTIALS

A B-Spline curve of degreek with a set ofn + 1 control pointsP0, P1, ...Pn and knot vectort0, t1, ..., tn+k of
nondecreasing sequence of values withti ∈ [0, 1] is defined as a weighted average of basis functionsNi,k times each
control point via the following formula:

C(t) =

n
∑

i=0

Ni,k(t)Pi (1)

where the basis functionsNi,k are determined iteratively from

Ni,k(t) =
(t − ti)

(ti+k−1 − ti)
Ni,k−1(t) +

(ti+k − t)

(ti+k − ti+1)
Ni+1,k−1(t) (2)

with termination criterion that

Ni,1(t) =







1 for ti ≤ t < ti+1,

0 otherwise .
(3)

The de Boor algorithm is a recursive means for evaluating theB-Spline curve at a particular locationt in the knot
vector, wheret ∈ [ti, ti+1) andP 0

i (t) = Pi. Then, the value of the curveC(t) is defined by recursively evaluating the
following formula:

P r
i (t) =

ti+k+r − t

ti+k+r − ti−1
P r−1

i−1 +
t − ti−1

ti+k+r − ti−1
P r−1

i (4)

and settingC(t) = P k
i (t). This algorithm is described in full detail in Farin11. This recursive algorithm is a more

efficient means for evaluating the function than evaluatingeach of the basis functionsNi,k, for each different location
in the knot vector. However, if the B-Spline curve is to be repeatedly evaluated using the same location in the knot
vector, then it is more efficient to calculate and store the basis functions, and reuse these basis functions for the
evaluation of the different curves and surfaces, directly via equation (1). To evaluate these basis functions, the de Boor
algorithm can be used by setting all of the control points to 0, except for the control point for the basis function being
evaluated, which is set to 1.

One of the properties of Bezier, B-Spline and NURBS curves and surfaces is that the derivative of the curve with
represent to the parametert can be calculated exactly, as

dC(t)

dt
=

n
∑

i=1

Ni,k−1(t)P
′

i (5)

using the derivative control pointsP 1
i which are defined as

P ′

i =
Pi − Pi−1

ti+k−1 − ti−1
(6)

Equivalently, the derivative of the B-Spline curve can be determined by modifying the basis functions, or

dC(t)

dt
=

n
∑

i=1

∂Ni,k(t)

∂t
Pi (7)

4 of 14

American Institute of Aeronautics and Astronautics



where

∂Ni,k(t)

∂t
=







0 if k = 1,

Ni,k−1(t)+(t−ti)
∂Ni,k−1(t)

∂t

ti+k−1−ti
−

Ni+1,k−1(t)+(ti+k−t)
∂Ni+1,k−1(t)

∂t

ti+k−ti+1
otherwise .

(8)

Evaluating the derivative using Equation (5) is more efficient if the derivative will be evaluated at various locations
in the curve using the same control points, but using Equation (7) is more efficient if the locations for the evaluation
do not change but the value of the control points do change, asis the case for the algorithms developed herein. By
evaluating the B-Spline curves and surfaces in the more efficient manner, the computational cost for several of these
algorithms is reduced by an order of magnitude.

Another type of derivative that will be used herein is the derivative of the B-Spline curve with respect to the
control points, or∂C(t)

∂Pi
. These derivatives result in the basis functions as is shownbelow. Again, since the parametric

locations are fixed, these derivatives need to be calculatedonly once and then are stored.

∂C(t)

∂Pi

= Ni,k(t) (9)

Now that the basics for a B-Spline curve have been presented,the formulation of B-Spline surfaces are presented.
These surfaces are evaluated in the same manner as the curvesare evaluated, as well as their derivatives. Given a set
of (m + 1)× (n + 1) control pointsdi,j , two different degreesk andl, and two different knot vectoru0, u1, ..., um+k

of nondecreasing sequence of values withui ∈ [0, 1] andv0, v1, ..., vn+l of nondecreasing sequence of values with
vi ∈ [0, 1], a B-Spline surface can be built using two parametersu andv, via a product of B-Spline curves, or

B(u, v) =

m
∑

i=0



Ni,k(u)





n
∑

j=0

Nj,l(v)di,j







 (10)

where the basis functionsNi,k(u) andNj,l(v) are defined as above.
Within the following derivations, two different derivatives will be needed - the derivative of the B-Spline surface

with respect to the parametersu andv and the derivative of the surface with respect to the controlpointsdi,j . Clearly,
the derivative of the B-Spline surface with respect todi,j is only dependent on the basis functions and hence can be
determined once and then stored, or

∂B(u, v)

∂di,j

= Ni,k(u)Nj,l(v) (11)

Following the derivation given above, the derivative with respect to the parameteru is

∂B(u, v)

∂u
=

m
∑

i=0





∂Ni,k(u)

∂u





n
∑

j=0

Nj,l(v)di,j







 (12)

where the derivative of the basis function mimics Equation (8). The derivative of the B-Spline surface with respect to
the parameterv is defined in an analogous fashion.

Finally, to represent a surface in 3D space, a point on this surface given by the parameters(u, v) is given by the
triplet (x(u, v), y(u, v), z(u, v)) where each coordinate is given by a set of control points. Forthe examples presented
herein, the x and z-coordinates are determined by an O-grid or a rectilinear structured grids, and the y-coordinates are
determined by the elevation of the free surface or by the velocity field associated with the free surface.

In order to calculate the derivatives∂y
∂x

and ∂y
∂z

, which are needed for the kinematic free surface solver, thechain
rule is applied to each term to get the following matrix relationship:

[

∂y
∂x
∂y
∂z

]

=

[

∂u
∂x

∂v
∂x

∂u
∂z

∂v
∂z

][

∂y
∂u
∂y
∂v

]

(13)

The terms∂y
∂u

and ∂y
∂v

can be calculated from expressions given above, such as equation (12). But, the terms in the
matrix are not defined above. By using the chain rule, it can beeasily shown that this matrix can be defined as is shown
below, completing the definition of these derivatives.

[

∂u
∂x

∂v
∂x

∂u
∂z

∂v
∂z

]

=

[

∂x
∂u

∂z
∂u

∂x
∂v

∂z
∂v

]

−1

(14)
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III. TAGGING THE NODES

Given a two-dimensional unstructured grid or set of data points to be fit with an approximating surface and a
two-dimensional structured B-Spline surface, where thex andz control points are fixed, a mapping between the(x, z)
coordinates of each point in the unstructured grid and its parametric values within the B-Spline surface needs to be
established. In this derivation, the y-coordinates for theB-Spline surface are the unknowns. Gardner, etal [7,8,9],
developed a method where the x, y and z-control points were the unknowns, allowing for greater flexibility, but for the
applications presented herein (i.e., free surface flows around surface ships), this level of flexibility and computational
complexity is not required.

Given a B-Spline surface withm + 1 × n + 1 control points in the XZ plane, the values ofx andz coordinates at
parameters0 ≤ u, v ≤ 1 can be calculated via

x̃(u, v) =

m
∑

i=0

Ni,k(u)





n
∑

j=0

Nj,l(v)Xi,j





z̃(u, v) =

m
∑

i=0

Ni,k(u)





n
∑

j=0

Nj,l(v)Zi,j





(15)

whereXi,j andZi,j are thex andz control points. For a node in the unstructured grid or a pointin the set of data
pointsPt = (xt, zt), the parameter values(ut, vt) need to calculated such thatxt = x̃(ut, vt) andzt = z̃(ut, vt).
Given an initial guess(u0, v0), define the difference between the coordinates defined by this guess and the target
coordinates as

(dx, dz)T = (x̃(u0, v0) − xt, z̃(u0, v0) − zt)
T (16)

Since the goal is to drive(dx, dz) to (0, 0), Newton’s method is an appropriate algorithm, which can be written as
[

u

v

]

new

=

[

u

v

]

old

−

[

xu xv

zv zv

]T [

dx

dz

]

(17)

wherexu, xv, zu, zv represent the derivatives of(x̃(u, v), z̃(u, v)) with respect to the parametric coordinates(u, v).
These derivatives can be evaluated via equation (5). This algorithm is continued until the magnitude of the vector
(dx, dz)T is below some tolerance.

Appropriate restrictions are needed to ensure that the parameter locations(u, v)T
new lie within the domain[0, 1]×

[0, 1]. Additionally, if the grid is an O-grid or C-grid, then othermodifications are needed along the re-entrant bound-
aries, if the new parameter location crosses over the boundaries.

Finally, to make this algorithm robust and efficient, a good initial guess is needed. An average of the parametric
values for the neighboring nodes, whose values are already known, serves an excellent choice. To take advantage of
this observation, the order in which the parametric values of the nodes is calculated should be slightly modified.

Nodes in list.
Nodes added to list.

Nodes with known parametric values.

O

E

D

C

BA

Figure 5. Efficient Tagging of Nodes.
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After calculating the value of the first node in the unstructured grid, using an initial guess of (0.5,0.5), the nodes
connected to that node are placed in a list. The first node in this list is chosen as the next node whose mappings is to be
determined. Taking the average of the parametric values forits neighboring nodes that have already been determined
as the initial guess, the parametric values for this node is determined via the above algorithm, then the neighboring
nodes for this node are added to the list, unless they are already in the list. The next node in the list is chosen, and the
search is continued. This algorithm is depicted in Figure 5.This modified ordering greatly improves the efficiency of
the process of tagging the nodes, due to the reduction in the number of iterations needed for each node.

IV. B-SPLINE APPROXIMATER

In this section, the method used to approximate a surface defined via the elevations of the y-coordinates in a three-
dimensional unstructured surface mesh to a B-Spline approximating surface is described. This algorithm is described
and then tested on an algebraic test case, where the target surface is exactly attainable by the B-Spline representation,
and then tested on the free surface generated about three different hullforms. Both rectilinear and O-grids are used for
the underlying B-Spline surface, where appropriate.

A. B-Spline Approximation Algorithm

For each node in the unstructured grid, given by coordinates(xI , yI , zI), the parametric value(uI , vI) within the
B-Spline surface has been determined, as described above, so thatx̃(uI , vI) = xI andz̃(uI , vI) = zI . Thus, the goal
is determine the control points in the y-coordinate direction that minimize the error between the B-Spline surface in
the y-direction and the y-values at the nodes in the unstructured grid, as defined by the functionF (Yi,j) whereYi,j are
the y-value of the control points,

F (Yi,j) =

Nnodes
∑

I=0

(ỹ(uI , vI) − yI)
2
Ai (18)

whereyI is the elevation at nodeI andỹ(uI , vI) is the value of B-Spline surface for the parametric value(ui, vI) as
is defined as

ỹ(u, v) =

m
∑

i=0

Ni,k(u)





n
∑

j=0

Nj,l(v)Yi,j



 (19)

Thus, to minimize this function, the derivative with respect to each control point must be zero, which is

∂F (Yi,j)

∂Yp,q

=

Nnodes
∑

I=0

2
∂ỹ(uI , vI)

∂Yp,q

(ỹ(uI , vI) − yI) Ai (20)

The term∂ỹ(uI ,vI)
∂Yp,q

reduces to the basis functionNp, k(uI)Nq, l(vI) so that equation (20) becomes

Nnodes
∑

I=0

Np,k(uI)Nq,l(vI) (ỹ(uI , vI) − yI)Ai = 0 (21)

If the goal is to minimize the function∆ỹ(u, v) which is a continuous function representing the differencebetween
the B-Spline surfacẽy(u, v) and the target free surface, the Galerkin finite element formulation is

∫

Ω

φp,q(u, v)∆ỹ(u, v)dΩ = 0 (22)

Evaluating this integral at each nodal location(uI , vI) within the unstructured grid, this integral can be discretized as

Nnodes
∑

I=0

φp,q(uI , vI)∆yIAI (23)

where∆yI = ỹ(uI , vI) − yI andAI is the area of the control volume associated with each nodeI. By choosingφp,q

to be the B-Spline basis functionsNp, k(u)Nq, l(v), these formula are equivalent.
These equations are solved in iterative form, usingDQ − GMRES [9].
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B. Void Space

For surface vessels that intersect the water surface, the interior of the ship (i.e., the void space) has no influence on
the free surface, and the free surface has no influence on the control points of the B-Spline surface which lie within
the void space. Thus, another means must be developed for determining these control points, in order for the surface
to vary smoothly throughout the void space. Distance weighted averaging based on theX andZ control points of the
B-Spline mesh was used to blend theY control points values at the edge of the void space.

V. Validation of B-Spline Approximation Algorithm

A. Algebraic Test Case

In order to test the B-Spline approximation algorithm, an algebraic test case was contrived that would admit an exact
B-Spline solution. An algebraic function was chosen to provide the target B-Spline control points. TheY control
points were evaluated using this algebraic function. Usingthese target control points, the elevations in an unstructured
square grid were calculated via the B-Spline definition and stored as the target elevationsYI . The target elevations are
shown in Figure 6.

Figure 6. Target Elevations for Algebraic Case.

Both an O-Grid and a rectilinear B-Spline grid were used to reconstruct the surface. The unstructured grid con-
sisted of 56,535 nodes, while the O-grid was20 × 50 and the rectilinear grid was20 × 20. For the O-Grid case,
the approximation algorithm was able to reconstruct theY control points of the B-Spline surface to three orders of
magnitude as is shown in Figure 7; and for the rectilinear case, the approximation algorithm reconstructed the surface
to machine precision as presented in Figure 8. The reason forthe degradation in the reconstruction for the O-grid
deals with the boundary condition across the singularity line. A typical O-grid used for the B-Spline approximation
algorithm is shown in Figure 9. Often O-grids are used to fit a mesh around an airfoil or some other object in the center
of the grid; for this application, no such object is present,which means that the center of the grid is a degenerate curve,
which must be treated in a special fashion. The reason that anO-grid is used rather than a rectilinear grids is that the
points for the O-grid can be clustered near the hull of the ship.

Figure 7. Error for Algebraic Case Using O-Grid.
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Figure 8. Error for Algebraic Case Using Rectilinear Grid.

Figure 9. Typical O-Grid.

B. Physically Realistic Cases

The results for the physically realistic cases show that theB-Spline approximation algorithm can adequately recon-
struct the general features of the free surface. However, due to the inherent smoothing that occurs for B-Spline curves,
the accuracy of the reconstruction will be less in regions oflarge variation in the free surface. By using an O-grid,
which will allow for more control points near the hull where the free surface is varying the most, the accuracy of the
representation is improved. The size of the B-Spline surfaces and the number of nodes in the unstructured surface
grids are shown in Table 1. The ratio of the number of nodes in the unstructured grid to the number of control points
is approximately 10 to 1, showing that the number of unknownsis significantly reduced in this procedure.

Case B-Spline Grid Nodes in

Control Pts Type Surface

3D Hydrofoil 30 × 81 O-grid 27,543

3D Hydrofoil 49 × 76 Rectilinear 27,543

Wigley Hull 40 × 101 O-grid 68,874

DTMB 5415 69 × 109 O-grid 83,292
Table 1. Grid Sizes for Test Cases.

The first physically realistic case deals with a proprietarythree-dimensional hydrofoil, for which we completed
a viscous free surface simulation several years ago. Since the hydrofoil is fully-submerged and since it was a three-
dimensional flow field, this case was a good next step for the algorithm. The target elevations are provided in Figure
10, with the flow from left to right and the submerged hydrofoil just below the white region of the free surface. At
the boundary of the domain, the elevations are not zero, although the B-Spline approximation algorithm fixes the
boundaries to zero. This difference is apparent in Figures 11 and 12 which show the error between the B-Spline
surface and the target surface for an O-grid and a rectilinear grid. The errors exist in four different locations: above
the hydrofoil where the free surface variation is the greatest, along the centerline, at the side boundaries shown on the
top and the bottom of the images, and at the outflow boundary along the right of the image. The first type of error
is due to the inherent smoothing when using B-Spline curves and surfaces and is expected. The second type, which
deals with the error along the centerline or symmetry plane,is much more noticeable for the O-grid which treats the
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centerline as a flattened circle. This error is due to the enforcement of continuity across this centerline, and for typical
monohull surface vessels, this flattened circle will lie within the void space of the monohull. The third error at the side
boundaries is caused by the fact that the B-Spline surface expects the free surface to be zero along these boundaries
when they are not.

The fourth type of error, which is at the outflow boundary, is due to both the non-zero free surface at the outflow
plane and due to the coarseness of the grid relative to the B-Spline surface mesh. From our experience with approxi-
mating free surface elevations on unstructured grids to B-Splines, if the unstructured grid is too coarse relative to the
B-Spline mesh, then the B-Spline surface is oscillatory in that region. Hence, if there are too few nodes within the
domain of influence of a control point, then the B-Spline approximation algorithm generates erroneous oscillations
due to the numerics of the algorithm. This behavior was especially seen in the rectilinear grids at the outer boundaries
where the unstructured grid is less refined.

Figure 10. Target Elevations for 3D Hydrofoil.

Figure 11. Error for 3D Hydrofoil Using Rectilinear Grid.

Figure 12. Error for 3D Hydrofoil Using O-Grid.

The second realistic case is the free surface around a prototypical naval destroyer class hullform called the DTMB
Model 5415 hull. This ship has a bulbous bow and the transom stern. The transom stern is the region of particular
interest because at slow speeds the transom stern is fully-wetted but at high speeds the transom stern is dry. If it is
fully-wetted, then the grid at the free surface can be plane that is gradually moved to match the free surface. However,
if the transom stern is dry or only partially wetted, then thegrid in the stern region must be built to match the expected
free surface, which is the motivation for this research.

The free surface elevations about the DTMB Model 5415 at Froude number of 0.28 is shown in Figure 13. For this
case, the free surface disturbances reach the top and bottomboundaries as well as the outflow boundary to the right of
the image. The computed elevations are shown in Figure 14 andmatch the target free surface excellently. There are
some differences at the bow of the ship and some minor differences in the stern region, but overall the agreement is
superb. The errors are shown in Figure 15 and are consistent with the explanations for the Wigley hullform and for the
submerged hydrofoil. The scale for Figure 15 is significantly different from the scale for Figures 13 and 14, so that
the error between the target and the computed elevations canbe seen more clearly.
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Figure 13. Target Elevations for DTMB 5415.

Figure 14. Computed Elevations for DTMB 5415.

Figure 15. Error for DTMB 5415.

VI. B-Spline Free Surface Solver

The B-Spline free surface solver moves the control points for the B-Spline surface in conjunction with the partial
differential equation governing the solution of the free surface (i.e., the kinematic condition), or

∂y

∂t
+ U

∂y

∂x
− V + W

∂y

∂z
= 0 (24)

Hence, the inputs to the solver are the old free surface control points and the velocitŷU = (U, V, W ) at each node in
the unstructured grid, and the solver outputs new free surface control points that optimize the solution to this equation
via a finite element discretization. In particular, the weight functions and the basis functions for the finite element
discretization are the same as the B-Spline basis functions, Ni,k(u)Nj,l(v). The equation associated with the control
pointYp,q is obtaining by multiplying the governing equation by the basis functionNp,k(u)Nq,l(v) or

∫

Ω

Np,kNq,l

(

∂ỹ

∂t
+ U

∂ỹN+1

∂x
− V + W

∂ỹN+1

∂z

)

dΩ = 0 (25)

whereN is the time level andΩ is the domain for the B-Spline surface. By making the substitution,∆ỹ = ỹN+1− ỹN

and using the assumption that∂ỹ
∂t

= ∆ỹ
∆t

, then this equation becomes

∫

Ω

Np,kNq,l

(

∆ỹ

∆t
+ U

∂∆ỹN+1

∂x
− V + W

∂∆ỹN+1

∂z

)

dΩ = −

∫

Ω

Np,kNq,l

(

∆ỹ

∆t
+ U

∂ỹN

∂x
− V + W

∂ỹN

∂z

)

dΩ

(26)
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where the unknowns are∆ỹ and are defined as

∆ỹ(u, v) =

m
∑

i=0

Ni,k(u)





n
∑

j=0

Nj,l(v)
[

Y N+1
i,j − Y i, jN

]



 (27)

Equation (26) was discretized by evaluating each integral via a quadrature that uses the information at the nodes of the
unstructured grid, similar to the discretization used for the B-Spline approximater. It should be noted that the spatial
derivatives on the right-hand-side of the equation can be evaluated exactly by using the derivatives of the B-Spline
surface and that the weights associated with the unknowns can be calculated exactly, since they are just combinations
of the B-Spline basis functions, as discussed in a previous section. These equations were similarly solved in iterative
form, using DQ-GMRES.

A. Physically Realistic Cases

The two physically realistic cases analyzed using the B-Spline free surface solver were the submerged hydrofoil
and the Wigley hull. The error for the submerged hydrofoil isshown in Figure 17. The error is symmetric since
the velocities generated by the RANS flow solver were symmetric about the symmetric hydrofoil. The error at the
outer boundaries is associated with the under-resolution of the unstructured grid as well as the incompatibility in the
boundary conditions at the outer boundary. The B-Spline solver forces the free surface to zero at these boundaries, but
the velocity field is not consistent with this assumption.

Figure 17. Error for 3D Hydrofoil.

The second physically realistic case deals with the free surface around the Wigley hullform. The Wigley hull is a
parabolic surface for which extensive experimental and numerical data have been generated and as such is a typical
validation case for free surface flow simulations. Because the Wigley hull crosses the waterline, there is a void space
in the middle of the geometry where the free surface does not exist, and the B-Spline control points for the void space
must be determined using the alternate algorithm describedabove.

The free surface for the flow at Froude number 0.289 is shown inFigure 18, with the flow from left to right. The
free surface at the left, top and bottom boundaries of the image are close to zero, since the free surface disturbances did
not reach these boundaries. The difference between the B-Spline approximation and the target free surface is shown
in Figure 19. Since the free surface is close to zero along topand bottom boundaries, there is no appreciable error
along these boundaries. There is error near the Wigley hull,especially near the bow and stern of the hull, due to the
smoothing effects of the B-Spline representation.

Figure 18. Target Elevations for Wigley Hull.
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Figure 19. Error for Wigley Hull.

VII. Conclusion

Algorithms for using B-Spline surfaces to represent a free surface for physically realistic geometries and to solve
for the free surface for these geometries have been presented. These algorithms can be viewed within the context
of the Galerkin finite element method, and for algebraic cases, where the exact solution is realizable, the algorithms
were able to converge to the target solution. For the simulations where the free surface and the velocity field were
generated by solving for the flow around a ship’s hull, the algorithms were able to capture the pertinent features well,
smoothing the results, in an advantageous fashion. Unfortunately, the free surface and the velocity field at the edges
of the B-Spline surface were not consistent with an undisturbed free surface, so that the boundary conditions for the
B-Spline approximater and the B-Spline free surface solverwere erroneous. Nonetheless, near the hull, the B-Spline
representations were quite accurate.

Future work includes incorporating these algorithms within the grid generator AFLR3 and within the unstructured
flow solverU2NCLE, as well as improving the boundary conditions, as stated above. This type of algorithm has been
successfully used to generate viscous unstructured grids for the transom stern of the DTMB Model 5415 geometry as
well as for the DDG-51 hullform, when the stern flap is present. Given the current viscous unstructured grid generation
algorithms, this grid generation approach using a B-Splinerepresentation for the free surface provides a useful option
for building high quality viscous grids. Continued testingand application of these algorithms for realistic geometries
is expected.
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