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The ability to move a grid during a simulation is of critical i mportance to many types of simulations, includ-
ing aero-elasticity simulations for wings, gradient-basd design optimization, dynamic movement of control
surfaces for maneuvering, and surface tracking methods fofree surface flows. For structured grids, trans-
finite interpolation is a robust method for propagating deformations on the surfaces into the volume grid, and
its two-dimensional version is readily extendible to threedimensions. For unstructured grids, two methods
that have been used within two-dimensional grids are the usef linear springs and torsional springs to propa-
gate the changes on the surface into the volume mesh. The uddinear springs provides an efficient method to
move unstructured grids, but it is not very robust, in that moderate to large deformations will result in invalid
meshes, where some of the elements have been inverted. Fardaveloped the torsional spring method for
two-dimensional grids, and has demonstrated that this metbd is much more robust, even for large deforma-
tions. Farhat and Murayama have attempted to extend the twadimensional torsional springs method to three-
dimensions, and their results are impressive. However, bbtof their methods reduces the three-dimensional
tetrahedra into simpler components without analyzing the ¢namics of the three-dimensional object, and as
such, their methods do not fully represent a three-dimensioal extension of the two-dimensional torsional
springs method. In this paper, a three-dimensional extensin of the torsional springs method is derived by
analyzing the equations of volume and area for a tetrahedromnd its faces and edges.

Nomenclature

kij Linear Spring Stiffness

lij Length of Edge Between Nodeésnd;
Ax;, Ay; Displacement at Nodée

g7 Angle at Node in Triangleijk

Cijk Torsional Spring Stiffness

gk Displacements at Nodés; andk
Rk Rotation Matrix for Trianglejk

£ Any Spatial Dependency

Areap,, Area of Triangleijk

Mi* Moment at cornei in Triangleijk
Fiik Force at cornei in Triangleijk

Tk Transformation Matrix at cornegrin Triangleijk
Cl oo Linear Spring Stiffness in 3D

%) Angle at Cornet in Volumeijkl
Vriakt Volume Spanned by Nodégk!

qr Fixed Displacements

Gm Displacements for Movable Nodes

K¢, Kmm  Square Matrices for Total Stiffnesses for Fixed and Movedddes
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[. Introduction

Moving computational grids are used within several areaafputational modeling including geometric design
optimization, fluid-structure interaction and separatibrocket boosters or stores. For geometric design optimiza
the shape of the object being optimized is changed, in omémprove the characteristics of the resulting flow,
which requires flow evaluations on grids that conform to tee shape. An example of fluid-structure interaction is
the change in shape and orientation of a wing under the sgaxdflight, and a special case of this fluid-structure
interaction is the induced flutter of the wing. Separatioolojects in a computational grid include the separation of
weapons ordinance or stores from an aircraft and the sépacftbooster rockets from a multi-stage rocket. In each
of these cases, the computational grid changes due to chanthe boundary of the grid.

However, the grid movement requirements of various typesfilations differ. For instance, the simulation of
two objects moving relative to one another but at a reasendistance from each other, such as one ship passing
another, requires the grid at a distance from the ships toenbo not the grid near a ship. The simulation of a
maneuvering missile that responds to a change in its costrddce will require that the grid in a region near the
control surface move while the grid attached to the conudiage may remain fixed. But for the simulation of the
water surface around a ship in motion requires that the gratiaed to the ship move while conforming to the shape
of the ship. And for geometric design optimization, or fansiations of vibrating surfaces, the grid attached to the
surface must move with the surface. Several grid movemeotighms will work satisfactorily for objects that are
translated or rotated within a grid, but many of these atbars fail for motions that have higher frequency components
such as exist for the latter cases.

Complicating many simulations, modeling viscous effectgectly is often crucial to capturing the flow features
properly. Thus, near the boundary of the viscous objeatggtid is quite tightly packed. For boundary layer grids, the
spacing off the wall can easily to &~ times the size of the body. Thus, almost any changes in tlaitocof the
boundary will cause the boundary to pass many layers of n@aése interior of the computational grid, unless these
nodes move a distance similar to the change at the boundary.

As unstructured grid technology has improved, its use wittuimputational modeling has increased, due to the
ease of fitting an unstructured grid around almost any ilexyushaped object. Furthermore, the ability to adapt
unstructured grids near regions of computational intenest added to its popularity. With the additional ability
to generate highly stretched grids in the boundary layestruntured grids can be used within computational fluid
dynamics to simulate the flow for a wide range of applications

However, developing a robust grid movement scheme for uctstred grids, that does not produce negative vol-
umes, that maintains the same nodal connectivity and thedrigputational efficient is an active area of research.
Several different methods have been proposed, studiedgridinented for moving unstructured grids including the
linear spring analogy and the torsional spring analogy.

Batina proposed the linear spring analogy, where a fictitious gpréplaces each edge in the unstructured grid
and the stiffness of the spring grows as the length of the eégecases. This method has been widely used, due
primarily to its ease of implementation and computatioffi@diency; however, this method quite frequently produces
grids with negative volume elements. Several efforts haenbnade to improve the linear spring analogy, including
those of Anderson, of Singh and of Murayama. Andefsgsed the linear spring analogy and local reconnection of the
grid wherever the deformed grid had elements with negatiemes. The resulting grids were valid but had degraded
quality even after the local reconnection. Sihgnd others have applied the linear spring analogy to prableim
translating and rotating objects where only nodes outsichrtain distance from the object in question are allowed to
rotate while rigidly moving the points attached to and néardbject in motion. For the class of problems that they
were simulating, this approach worked well. Muraydroambined some of the aspects of the torsional spring method
within the linear spring framework, where the stiffnessoassted with each edge included the linear spring stiffness
and the sum of the torsional springs associated with the.nbllas, the governing equations were less cumbersome
than the full torsional spring method, and they have shovmmesexcellent results.

The third method, which was developed by Fattat two-dimensional unstructured grids, is similar to tmear
spring analogy, but includes a torsional spring betweeh @agle in the computational grid. This torsional spring
method is guaranteed to generate grids with no negativenmlelements. More recently, Farhdtas extended
his method for three-dimensional meshes by slicing eaanete with two-dimensional planes and calculating the
torsional spring contributions for each two-dimensiotiaks

In the next section, both the linear spring and torsion gpnirethods are presented for two-dimensional unstruc-
tured grids, and several implementation issues are disdu3$e two-dimensional torsional spring method is formu-
lated differently from Farhat's presentation, because fimimulation is clearly extendible to three-dimensionadsg
The following section introduces the three-dimensionaitmal spring method and discusses the application of this
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method to both tetrahedral and mixed element grids. In tla $iections, two benchmark cases and several examples
of three-dimensional grid deformation involving the sa@utof the free surface equation for notational ship hulks ar
presented.

[I. Linear And Torsional Springs for Two-Dimensional Grids

A. Linear Spring Formulation

Batind proposed a grid movement method for unstructured gridsevb@eh edge in the computational grid is replaced
by a linear spring whose stiffness is inversely proportidodhe length of the edge. Thus, for the edge connecting
nodes andy, the stiffness:;; of the spring is
1 1
ki = = — Q)
(e e (R N S L 1
where(x;,y;) and(x;,y;) are the coordinates of nodésandj andp is a predetermined coefficient, usually 1 or 2
andl;; = v/((z; — ;)% + (vi — y;)?). Given a set of nodal displacements or forces acting on thedtry of the
computational grid, the following equations for the interilisplacements are solved iteratively until all the feraee
in equilibrium

Azt = Zj kiij?

I @
Ayt — 2 ki Ayj
! > ki

wherej is summed over all edges connected to nbdEhis method is readily extendible to three-dimensionalgr
and is computationally efficient requiring only a few Jacitdaiations to achieve an acceptable level of accuracy.

Ay
(Xj,¥5)

Yi-Yi

s a

(Xi,yi) Xj-Xj
Figure 1. A Displacement in y-direction results in displaents in x and y directions.

Technically speaking, these equations do not simulate ¢hexior of a network of springs because there is no inter-
action between the andy coordinates. A displacement in one coordinate will not iexfice the location in the other
coordinate, as would be the case for a network of springs.xamele of this coupled interplay is shown in Figure 1,
where a displacement in the y-direction is applied to npaéich results in a displacement in both directions for node
i. To simulate the behavior of a network of springs, the follaysset of equations for each spring must be summed
over all springs:

Forces in x-direction at node

kij [(Am; — Az;) cos® o + (Ay; — Ay;) cos asin o A3)
Forces in y-direction at node

kij [(Az; — Az;j) cosasina + (Ay; — Ay;) sin® o @)

For either representation, however, this method ofters fait complicated geometries and for large changes in
the boundary, because negative areas are generated whenanosds-over edges in the grid. The creation of negative
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areas is illustrated in Figure 2, where the top node is pudbathwards and the node in the middle is forced to pass
the edge between the bottom two nodes.

1
1
2 3 2 3 2 2 3

Figure 2. Negative Areas Produced by Linear Spring Method.

The reason for this failure is that the stiffness in the lms@ing method prevents two nodes from colliding but does
not prevent a node from crossing over an edge. As two nodedagelr together, the stiffness increases without bound
preventing the collision; but there is no mechanism to preaenode from crossing an edge.

B. Torsion Spring Formulation in 2D

To provide a more robust unstructured grid movement metRacdhat provided a mechanism to prevent a node from
crossing an edge by using torsional springs around each aed&iown in Figure 3.

Linear Spring

Torsional Spring
Figure 3. Placement of Linear and Torsion Springs.

The stiffness of the torsion spring is inversely proporéibto the sine of the angle, so that the stiffness grows
without bound as the angle decreases towards zero or iesré@sardd 80°, or

1

sin? 9}

Cijr = (5)

Thus, as a node moves towards an edge, the angle goes towesdarm the stiffness of the torsion spring grows. The
sine of the angle is squared to prevent a negative stiffness.
For the torsion spring method, the an@jé’C changes as the location of the three nodes in the angle ch@ahge

change in this anglfé‘.\e;‘j’C with respect to changes in the locations of these nodesateckvia
Ael:jk _ RijkTqijk (6)

whereq?/* is the displacements of the three nodeg andk and R/* is rotation matrix. These matrices are actually
vectors of the form

T 06,7

0;

Ayi 0y

Az 20

ik _ j ijk _ | x;

R b R @)

Yy oy,

Azy 96,

A %6

Yk 00
- - L Oy,
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Figure 4. Notation for a typical angle in a Triangle

The area of a triangle, as shown in Figure 4, is

1
AreaA = §Linij,k (8)

ijk
But the height of this trianglé/;; ;, is sin(@jfjk)Lik. Thus, the sine of the angle can be expressed as

g 2Areap,.
. 6.1_]1@ _ ijk 9
sin(6;7%) “Tole 9)

The derivative oﬁin(eﬁj’“) with respect to any term igi/* can be expressed via the chain rule as

) ) — s (10)
Howevergsin(#) is defined above, so that this derivative is
Thus, the entries in the rotation matd@’* can be expressed as
99 _ sin(6) ( 1 ddAreap,, 1 0L; 1 6Lik) (12)
0&  cos(0) \ Arean,,, o0& Li; 0¢ Ly, 0€

This formulation reduces exactly to the formulation prasdiy Farhat but, as will be shown, more easily extends
to three dimensions.
C. Linear Spring Formulation in 2D

Following the same formulation for the torsion spring, thawge in the length of eddg with respect to the displace-
ments at the two endpoints can be expressed via a lineafdraretion

Alij = R, 00 tij (13)

whereg;; is the displacement at the two endpoints @, . is the rotation matrix associated with the linear spring.
Referring to Figure 1, the length of the edge is

lij = \/(ffj — )’ + (g5 — i) (14)
and the change in the length with respect to a changgis

6lij - —(.”L'j — .I'l)
ox; lij

= —cosa (15)
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Thus, the rotation matrix can be expressed as

— COoS
i —sina
9 —
linear — (16)
COS «x
sin «
The stiffness matrix is simplg;, .. = . Converting these equations into forces, we get
ij
Fid _ [Rii Tcij R ij
linear — linear linear {¥inear | 4
) 17)
_ KW ij
- Klinear q
where
cos? o cosasina —cos? o —cosasina
ij 1 cos asin a sin? a — cos asin « —sin? a
K = 18
linear l?j —cos? —cosasina cos? a cos asin « (18)
—cos asina —sin? « cos acsin a sin? o

Expanding this matrix, the forces given in equations (3) @)dre obtained.

D. Equilibrium of Forces

Following the derivation of Farhat, the momewti/* produced by the change in the anglean be expressed by the
scalar equation - - -
MYE = Yk AGIF (19)

whereC7* is the stiffness of the spring. These moments can be comlietteforcesF/* for which the equilibrium
conditions must be determined by a linear transformatiomim#/* determined from

and equating the work done by the forces with the work dondbyrioments, or
FijkTqijk _ Mz'jkTAeijk (21)

Plugging in equation (6) and using equation (20),

(TijkMijk)T qijk _ MiijijkTqijk (22)
or
MijkTijkTqijk _ Mz'ijijkTqijk (23)
Thus, the transformation matrix is - -
Tk — Rish (24)

and the equation for the forces is
ik — [RijkciijijkT 7"
o (25)
_ Kzgkqlgk

This derivation is valid for any angle in the two-dimensibneesh whether it is part of triangle or a higher order
element such as a quadrilateral; Farhat’s derivation asstinat each element is a triangle and thus considers the thre
angles simultaneously. Thus, in the derivation presengeelih, R7* is a[6 x 1] matrix andC/* is a[1 x 1] matrix;
whereas in Farhat's derivatid#/* is a[6 x 3] matrix andC/* is a[3 x 3] matrix.
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lll. Linear and Torsional Springs for Three-Dimensional Gr ids

A. Linear Spring Formulation in 3D

As was the case for two-dimensional linear springs, thieeedsional linear spring analogy replaces each edge with
a spring whose stiffness is inversely proportional to thegth of the edge, raised to some powerTo derive the
rotation matrix, consider the edgg between points and; in Figure 5.

Figure 5. Diagram of Edge and Corner in 3D.
The length of this edge is

lij = \/(%‘ —mi)? + (y; —vi)? + (25 — 20)° (26)

and the change in the length based on a changeim
6lij - —(,Tj — ,Ti)

3xi o lij

= —cosfsin¢ (27)

The other derivatives in the rotation matrix are similartis tone. Thus, the relationship between the forces acting on
an edge and change in location of the endpoints can be egprass

] _ () % — ] ] ¥ 1]

‘Flinear - Klinearq - Rlinear ClinearRlinear q (28)
where _ )
—cosfsing
—sinfsing

ij —COoS
R ¢ (29)

(%3 .
rnear cosfsing

sinfsing

oS}

andCiy =L

linear 2.
ij

B. Torsional Springs in 3D

In 3D, the torsion spring is applied to each corner of an eténwehether it is a tetrahedron or a higher order element.
The corner depicted in Figure 5 is labeléd” and consists of 4 nodes, Z;, &, and.;. In this figure, nodes; and

2}, appear to lie in thery-plane, which is not necessarily true. Constructing 3 wesalg, v, ¥, originating at node

#; and passing through the other three nodes, the volume oétitahedrort/ “/*! formed by these four nodes can be
expressed as

y 1
vk = g Ui (Ui % Tik;)
1.
= gA”kajk (30)

1 ..
= gA”klil sin ¢
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where A7* is the area of the triangular face associated with nadgsandk. Thus, the equation fosin ¢ can be
expressed as

) 3vijkl
s @ = ATklll (31)
and the equation faros ¢ is
\/AiijZilQ _ gyigkl?
cosp = AT, (32)
The derivative okin ¢ with respect to a variablgis then
Jdsinp dy
_ o 33
SE ~ OSPge (33)
and
Ising & (3VUMN 3 gviEk gyl gk 3yiakl gt
o 06 \ Akl ) Alkly ¢ Aidk?ly 06 Aikly® O€
- 3vijkl 1 avijkl B 1 aAijk B iaill (34)
o Aidkly \ Viikl ¢ Ak 9¢ Ly O
S, 1 Vi 1 9049k 1 91"
= Sin — — — — —
P\ViR "o T AR 9 1y 0€
SO
dp _sing (1 VER 1 gATE 1 It (35)
o0& cosp \Viikl  9¢ Ak Q¢ ly O

The variation ofp with respect tac, y andz for the four nodes that make up the corner are needed. Thatiear
forms the vectoR7*' . and the stiffness matrik “*. isformed from the vectaR™“*' . along with the stiffness

torsion? torsion torstion

coefficientC?*  ~ — ;@. Each corner in a tetrahedra consists of three differentearap determined from the

torsion sin2
choice of the face and the opposite edge, so that the cotiritiiom each angle in each corner must be considered.
Furthermore, for higher order elements such as prisms amaahgts, each corner of these elements must be considered

individually.

C. Solution Method

For both the two-dimensional and the three-dimensionas;asfter summing up the forces at each node, the force
equation to be solved has the form
F=Kq=0 (36)

where the displacements at certain boundary locations)a@, for
g=qgonT (37)

After reindexing the nodes in the grid so that the fixed nodedacated at the front of the list, the displacement
vectorq can be expressed as

‘- M ®)
dm
whereg; are the fixed displacements agpg are the displacements for the movable nodes. Similarly higix/< can
be expressed as
K= | K (39)

whereK sy and K., are square matrices atd;,,, = K7,,. As a result, the equation to be solved is

These equations are solved using a Gauss-Seidel iteragitieomh
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IV. Examples

The following examples show the compression of a benchmeoklem of a set of tetrahedra within a larger
tetrahedra, as an extension of the two-dimensional benghpnasented by Farhat, the translation of a cube within
a cube, similar to that performed by Murayama, and threeifft simulations of the free surface flow problem,
requiring the motion of the grid. These free surface flow pgots include the flow around a NACA 0012 hydrofoil,
around a simple hull form called the Series®Q = 0.6 hull and around a more realistic hullform, representative o
naval destroyers.

A. Benchmark Cases

The first example is a three-dimensional benchmark casetvibiian extension of the two-dimensional benchmark
case used by FarifatThe undeformed mesh consists of 9 nodes and 18 tetrahedlia ahown in Figure 6 and 7.
The node at the top of the mesh moves downward compressirigttabedra. Figure 6 shows the view from one of
the three sides of the mesh, and Figure 7 shows the mesh feotagh

A

Figure 6. Benchmark Case from the Side.

A

Figure 7. Benchmark Case from the Top.

The top node is forced downward compressing nodes. Thesen@ish remains valid when using the torsional springs
as is shown in Figure 8, 9 and 10, where the mesh is compreas28tit 50% and75% of its original size. The linear
spring analogy fails when the grid is compressed by more 308§ at which point the lowest node in the interior of
the mesh passes through the bottom face of the mesh.

Z-N

Figure 8. Benchmark Case Compressed by 25%.

=N

Figure 9. Benchmark Case Compressed by 50%.
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=

Figure 10. Benchmark Case Compressed by 75%.

In Figures 11 and 12, the original and deformed grid for a aitlength 1 within a cube of length 3 are shown.
The inner cube is pushed upwards by a distance of 0.6. Th#éaesmesh is still valid (i.e., the volumes of each
element are positive), without the need to reconnect thesodregenerate the grid.

Figure 12. Deformed Cube within a Cube.

B. Applications to Free Surface Flows

The first application deals with the flow of water past a twmelnsional submerged hydrofoil, which creates water
waves. In order to simulate the flow of water, the interfaceviben the water and the air must be allowed to move.
For surface tracking methods, the grid must also be movedateshmthe free surface. The flow past the NACA 0012
hydrofoil has been calculated experimentally, and sevesalarchers have run simulations for this geometry to atdid
their free surface flow solvers. Hence, this case is an extaathoice as an initial test case for free surface simulatio
Burg’ provides a full discussion of the free surface tracking athm, which uses the torsional spring method to move
the mesh.

Shown in Figures 13 and 14 are the original and deformeduxtsired grids around the two-dimensional hydro-
foil. The quality of the deformed grid is roughly the samelasariginal grid, despite the deformation. This simulation
was performed on a two-dimensional grid that was extrudedthree-dimensions, and the grid movement was per-
formed on the three-dimensional grid. As can be seen frorfighees, the deformed grid has similar grid quality as

the original grid.
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Figure 14. Deformed unstructured grid about NACA 0012 hyaito

The second test case deals with the Serie€'66= 0.6 hull form. This hull form is often used by researchers
as a validation case since the geometry is relatively siraptethe flow features are not complicated. There is also a
significant amount of experimental data available for thill form, for comparison purposes. The main reason that
this case is shown within this paper is that the grid as then sibthe ship is extremely distorted, highlighting the
ability of the grid movement algorithm to handle complichteesh deformations.

Figure 15. Contours of Free Surface Elevations for Seriddu@Dform.

In Figure 15, the free surface contours are shown for theeS&0 hull form, where the red and white values are
the highest elevations. The flow is from left to right, andnet $tern of the ship, the flow rises greatly, as it does at the
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bow. At the bow of the ship, the geometry of the ship risesie@ifyy and does not present much difficulty for the grid
movement algorithm. At the stern of the Series 60, the gegntesrives the water at a sharp angle, so that if the water
rises by 1 unit vertically, a node of the surface of the shiwasdy approximately 2 units horizontally. Thus, the grid
is greatly stretched in the stern region. The elements aloagenterline for the original grid and for the deformed
grid are shown in Figures 16 and 17. In Figure 17, the gridéarnty stretched upward and to the right, but the grid is
still a valid grid with no negative volumes.

VNN
RARNSRRRRR
NSRS

|

Figure 17. Deformed Series 60 Grid.

The final example deals with the David Taylor Model Basin MddL5 hull form, which is a prototypical hullform
for naval destroyer class ships. It has many of the featurastoal ships such as a protruding bow, a bulbous bow
sonar dome, a tapered stern region where the propellefts,stteuts and rudder would be placed, and a transom stern.
The transom stern is of particular importance for the frafase calculations. The flow is the stern region is highly
complicated and is strongly dependent on the Reynolds nymihéch affects the free surface and hence the forces
acting on the vessel. The flow in the stern makes griddingahg®mn complicated as well as simulating the flow with
a free surface flow solver where the grid must be moved to nthtefree surface.
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Figure 18. Free Surface Elevations for the DTMB Model 5415.

_J

Figure 19. Top View of Free Surface Elevations in Stern Regio

Figure 20. View of Free Surface Elevations from Stern of Ship

The free surface for the DTMB Model 5415 is shown in Figures 18 and 20, showing the overview of the
flow patterns as the flow travels from left to right. Again, tiigher elevations are in red and white while the lower
elevations are in blue and black. The familiar Kelvin wavttgra originating at the bow can be seen, and the “rooster
tail” at the stern is also apparent. The close-up in the gegion in Figure 19 shows the complicated free surface
structures in the stern region, and in Figure 20, the thiseasional effects of the free surface can be seen in the ster
looking away from the ship, where the ship’s hull is showniiayg In particular, the flow drops dramatically behind
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the corner of the stern and the port and starboard sides,ha&mndrises again at the centerline. This flow behavior
greatly changes the shape of the grid in this region.

Figure 22. Grid for Deformd Model 5415.

A comparison of the grids along one cutting plane of the grishiown in Figures 21 and 22. The cutting plane is
parallel to the centerline and is shifted so that it cutsulgtothe depressed region behind the intersection of the ster
and port side of the ship. The grid is compressed at the steapproximately 60%, and the deformation in the stern
region is quite complicated being both compressed and ebgubin neighboring areas.

Both the Series 60 hull form and the DTMB Model 5415 seried fari have grids that include prisms and
pyramids near the viscous surfaces. The points nearestitheeré moved rigidly with the deformations on the viscous
surfaces, as the free surface rises and falls. Howeveidew$a certain distance away from the viscous surfaces, the
nodes move in response to the forces acting through thetaisand linear springs within the mesh. From the success
of these two simulations, this torsional spring methodrtyezan be applied to elements other than tetrahedra.

V. Conclusion
A three-dimensional version of the torsional spring methasibeen presented that considers the three-dimensional

contributions of each element without reducing the elesentwo-dimensions. In order to derive this formulatior th
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two-dimensional linear and torsional springs formulasi@rere recast so that the extension to three-dimensionsiwoul
be obvious. This formulation is extendible to other eleradr@sides the basic tetrahedron, since it only considers the
corners of each element.

This algorithm is demonstrated on two benchmark casesindealith a three-dimensional extension of Farhat’s
simplest benchmark case and with a cube within a cube. Indmghs, the grid is compressed significantly farther
than could be accomplished with linear springs. Then the midvement algorithm is demonstrated using three free
surface flow simulations, including flow past a submergeddiydl, flow around the Series 60,=60 hull form which
has a tapered stern region, and flow around the DTMB Model 54ti&s hull, which has a transom stern. In each
case, the deformed grid remains valid even after moderateviere distortions of the grid.

Acknowledgments

This work was supported by the Office of Naval Research urgedirection of L. Patrick Purtell in conjunction
with efforts to simulate the free surface flow around surfeessels. The support is gratefully acknowledged.

References

1Batina, J. T.Unsteady Euler Airfoil Solutions Using Unstructured DyrieieshesAIAA Paper 89-0115, 27th AIAA Aerospace Sciences
Meeting, January, 1989.

2Anderson, W. K. Aerodynamic Design Optimization on Unstructured GridshveitContinuous Adjoint FormulatiorAlAA Paper 97-0643,
35th AIAA Aerospace Sciences Meeting, January 1997.

3Singh, K. P., Newman, J. C., and Baysal, Dynamic Unstructured Method for Flows Past Multiple Obgeat Relative Motion AIAA
Journal, Vol. 33, No. 4, pp. 641-649, April, 1995.

4Murayama, M., Nakahashi, K., and Matsushima, Wnstructured Dynamic Mesh For Large Movement and DeforomatAIAA Paper
2002-0122, 40th AIAA Aerospace Sciences Meeting, Jan282.

5Farhat, C., Degand, C., Koobus, B., and Lesoinne,Tetsional Springs for Two-Dimensional Dynamic UnstruetFluid MeshesComput.
Methods Appl. Mech. Engrg 163, pp. 231-245, 1998.

SDegand, C., Farhat, CA Three-Dimensional Torsional Spring Analogy Method fostimctured Dynamic Meshg€omputers and Structures,
80, pp. 305-316, 2002.

“Burg, C. O. E., Sreenivas, K., Hyams, D. G., and Mitchell,Umstructured Nonlinear Free Surface Flow Solutions: Vafidn and Verifica-
tion, AIAA Paper 2002-2977, 32nd AIAA Fluid Dynamics Conferen&¢. Louis, June, 2002.

150f 15

American Institute of Aeronautics and Astronautics



