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The ability to move a grid during a simulation is of critical i mportance to many types of simulations, includ-
ing aero-elasticity simulations for wings, gradient-based design optimization, dynamic movement of control
surfaces for maneuvering, and surface tracking methods forfree surface flows. For structured grids, trans-
finite interpolation is a robust method for propagating deformations on the surfaces into the volume grid, and
its two-dimensional version is readily extendible to three-dimensions. For unstructured grids, two methods
that have been used within two-dimensional grids are the useof linear springs and torsional springs to propa-
gate the changes on the surface into the volume mesh. The use of linear springs provides an efficient method to
move unstructured grids, but it is not very robust, in that moderate to large deformations will result in invalid
meshes, where some of the elements have been inverted. Farhat developed the torsional spring method for
two-dimensional grids, and has demonstrated that this method is much more robust, even for large deforma-
tions. Farhat and Murayama have attempted to extend the two-dimensional torsional springs method to three-
dimensions, and their results are impressive. However, both of their methods reduces the three-dimensional
tetrahedra into simpler components without analyzing the dynamics of the three-dimensional object, and as
such, their methods do not fully represent a three-dimensional extension of the two-dimensional torsional
springs method. In this paper, a three-dimensional extension of the torsional springs method is derived by
analyzing the equations of volume and area for a tetrahedronand its faces and edges.

Nomenclature

kij Linear Spring Stiffness
lij Length of Edge Between Nodesi andj

∆xi, ∆yi Displacement at Nodei
θ

ijk
i Angle at Nodei in Triangleijk

Cijk Torsional Spring Stiffness
qijk Displacements at Nodesi, j andk

Rijk Rotation Matrix for Triangleijk
ξ Any Spatial Dependency
Area4ijk

Area of Triangleijk
M ijk Moment at corneri in Triangleijk

F ijk Force at corneri in Triangleijk

T ijk Transformation Matrix at corneri in Triangleijk

C
ij
linear Linear Spring Stiffness in 3D

ϕ Angle at Corneri in Volumeijkl

V ijkl Volume Spanned by Nodesijkl

qf Fixed Displacements
qm Displacements for Movable Nodes
Kff , Kmm Square Matrices for Total Stiffnesses for Fixed and Moveable Nodes
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I. Introduction

Moving computational grids are used within several areas ofcomputational modeling including geometric design
optimization, fluid-structure interaction and separationof rocket boosters or stores. For geometric design optimization,
the shape of the object being optimized is changed, in order to improve the characteristics of the resulting flow,
which requires flow evaluations on grids that conform to the new shape. An example of fluid-structure interaction is
the change in shape and orientation of a wing under the stresses of flight, and a special case of this fluid-structure
interaction is the induced flutter of the wing. Separation ofobjects in a computational grid include the separation of
weapons ordinance or stores from an aircraft and the separation of booster rockets from a multi-stage rocket. In each
of these cases, the computational grid changes due to changes in the boundary of the grid.

However, the grid movement requirements of various types ofsimulations differ. For instance, the simulation of
two objects moving relative to one another but at a reasonable distance from each other, such as one ship passing
another, requires the grid at a distance from the ships to move but not the grid near a ship. The simulation of a
maneuvering missile that responds to a change in its controlsurface will require that the grid in a region near the
control surface move while the grid attached to the control surface may remain fixed. But for the simulation of the
water surface around a ship in motion requires that the grid attached to the ship move while conforming to the shape
of the ship. And for geometric design optimization, or for simulations of vibrating surfaces, the grid attached to the
surface must move with the surface. Several grid movement algorithms will work satisfactorily for objects that are
translated or rotated within a grid, but many of these algorithms fail for motions that have higher frequency components
such as exist for the latter cases.

Complicating many simulations, modeling viscous effects correctly is often crucial to capturing the flow features
properly. Thus, near the boundary of the viscous objects, the grid is quite tightly packed. For boundary layer grids, the
spacing off the wall can easily to be10−6 times the size of the body. Thus, almost any changes in the location of the
boundary will cause the boundary to pass many layers of nodeson the interior of the computational grid, unless these
nodes move a distance similar to the change at the boundary.

As unstructured grid technology has improved, its use within computational modeling has increased, due to the
ease of fitting an unstructured grid around almost any irregularly shaped object. Furthermore, the ability to adapt
unstructured grids near regions of computational interesthave added to its popularity. With the additional ability
to generate highly stretched grids in the boundary layer, unstructured grids can be used within computational fluid
dynamics to simulate the flow for a wide range of applications.

However, developing a robust grid movement scheme for unstructured grids, that does not produce negative vol-
umes, that maintains the same nodal connectivity and that iscomputational efficient is an active area of research.
Several different methods have been proposed, studied and implemented for moving unstructured grids including the
linear spring analogy and the torsional spring analogy.

Batina1 proposed the linear spring analogy, where a fictitious spring replaces each edge in the unstructured grid
and the stiffness of the spring grows as the length of the edgedecreases. This method has been widely used, due
primarily to its ease of implementation and computational efficiency; however, this method quite frequently produces
grids with negative volume elements. Several efforts have been made to improve the linear spring analogy, including
those of Anderson, of Singh and of Murayama. Anderson2 used the linear spring analogy and local reconnection of the
grid wherever the deformed grid had elements with negative volumes. The resulting grids were valid but had degraded
quality even after the local reconnection. Singh3 and others have applied the linear spring analogy to problems of
translating and rotating objects where only nodes outside acertain distance from the object in question are allowed to
rotate while rigidly moving the points attached to and near the object in motion. For the class of problems that they
were simulating, this approach worked well. Murayama4 combined some of the aspects of the torsional spring method
within the linear spring framework, where the stiffness associated with each edge included the linear spring stiffness
and the sum of the torsional springs associated with the node. Thus, the governing equations were less cumbersome
than the full torsional spring method, and they have shown some excellent results.

The third method, which was developed by Farhat5 for two-dimensional unstructured grids, is similar to the linear
spring analogy, but includes a torsional spring between each angle in the computational grid. This torsional spring
method is guaranteed to generate grids with no negative volume elements. More recently, Farhat6 has extended
his method for three-dimensional meshes by slicing each element with two-dimensional planes and calculating the
torsional spring contributions for each two-dimensional slice.

In the next section, both the linear spring and torsion spring methods are presented for two-dimensional unstruc-
tured grids, and several implementation issues are discussed. The two-dimensional torsional spring method is formu-
lated differently from Farhat’s presentation, because this formulation is clearly extendible to three-dimensional grids.
The following section introduces the three-dimensional torsional spring method and discusses the application of this
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method to both tetrahedral and mixed element grids. In the final sections, two benchmark cases and several examples
of three-dimensional grid deformation involving the solution of the free surface equation for notational ship hulls are
presented.

II. Linear And Torsional Springs for Two-Dimensional Grids

A. Linear Spring Formulation

Batina1 proposed a grid movement method for unstructured grids where each edge in the computational grid is replaced
by a linear spring whose stiffness is inversely proportional to the length of the edge. Thus, for the edge connecting
nodesi andj, the stiffnesskij of the spring is

kij =
1

((xi − xj)2 + (yi − yj)2)p/2
=

1

l
p
ij

(1)

where(xi, yi) and(xj , yj) are the coordinates of nodesi andj andp is a predetermined coefficient, usually 1 or 2
andlij =

√

((xi − xj)2 + (yi − yj)2). Given a set of nodal displacements or forces acting on the boundary of the
computational grid, the following equations for the interior displacements are solved iteratively until all the forces are
in equilibrium

∆xn+1

j =

∑

j kij∆xn
j

∑

j kij

∆yn+1

j =

∑

j kij∆yn
j

∑

j kij

(2)

wherej is summed over all edges connected to nodei. This method is readily extendible to three-dimensional grids
and is computationally efficient requiring only a few Jacobiiterations to achieve an acceptable level of accuracy.

(x  ,y  )jj

∆y

(x  ,y  )

y  - y

x  - x ii i

ij

j

α

Figure 1. A Displacement in y-direction results in displacements in x and y directions.

Technically speaking, these equations do not simulate the behavior of a network of springs because there is no inter-
action between thex andy coordinates. A displacement in one coordinate will not influence the location in the other
coordinate, as would be the case for a network of springs. An example of this coupled interplay is shown in Figure 1,
where a displacement in the y-direction is applied to nodej which results in a displacement in both directions for node
i. To simulate the behavior of a network of springs, the following set of equations for each spring must be summed
over all springs:

Forces in x-direction at nodei:

kij

[

(∆xi − ∆xj) cos2 α + (∆yi − ∆yj) cosα sin α
]

(3)

Forces in y-direction at nodei:

kij

[

(∆xi − ∆xj) cosα sin α + (∆yi − ∆yj) sin2 α
]

(4)

For either representation, however, this method often fails for complicated geometries and for large changes in
the boundary, because negative areas are generated when nodes cross-over edges in the grid. The creation of negative
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areas is illustrated in Figure 2, where the top node is pusheddownwards and the node in the middle is forced to pass
the edge between the bottom two nodes.

4

1

1

1

4

4

2 3 2 3 2 3

Figure 2. Negative Areas Produced by Linear Spring Method.

The reason for this failure is that the stiffness in the linear spring method prevents two nodes from colliding but does
not prevent a node from crossing over an edge. As two nodes getcloser together, the stiffness increases without bound
preventing the collision; but there is no mechanism to prevent a node from crossing an edge.

B. Torsion Spring Formulation in 2D

To provide a more robust unstructured grid movement method,Farhat provided a mechanism to prevent a node from
crossing an edge by using torsional springs around each node, as shown in Figure 3.

θ i
ijk

Torsional Spring
Linear Spring

Linear Spring

k

ji

Figure 3. Placement of Linear and Torsion Springs.

The stiffness of the torsion spring is inversely proportional to the sine of the angle, so that the stiffness grows
without bound as the angle decreases towards zero or increases towards180o, or

Cijk =
1

sin2 θ
ijk
i

(5)

Thus, as a node moves towards an edge, the angle goes towards zero, and the stiffness of the torsion spring grows. The
sine of the angle is squared to prevent a negative stiffness.

For the torsion spring method, the angleθ
ijk
i changes as the location of the three nodes in the angle change. The

change in this angle∆θ
ijk
i with respect to changes in the locations of these nodes is related via

∆θ
ijk
i = RijkT

qijk (6)

whereqijk is the displacements of the three nodesi, j, andk andRijk is rotation matrix. These matrices are actually
vectors of the form

qijk =





















∆xi

∆yi

∆xj

∆yj

∆xk

∆yk





















, Rijk =























∂θi

∂xi

∂θi

∂yi

∂θi

∂xj

∂θi

∂yj

∂θi

∂xk

∂θi

∂yk























(7)
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L ik

H ij,k

L ij

θi j

k

Figure 4. Notation for a typical angle in a Triangle

The area of a triangle, as shown in Figure 4, is

Area4ijk
=

1

2
LijHij,k (8)

But the height of this triangleHij,k is sin(θijk
i )Lik. Thus, the sine of the angle can be expressed as

sin(θijk
i ) =

2Area4ijk

LijLik
(9)

The derivative ofsin(θijk
i ) with respect to any term inqijk can be expressed via the chain rule as

∂ sin(θ)

∂ξ
=

∂ sin(θ)

∂θ

∂θ

∂ξ
= cos(θ)

∂θ

∂ξ
(10)

However,sin(θ) is defined above, so that this derivative is

∂ sin(θ)

∂ξ
= sin(θ)

(

1

Area4ijk

∂Area4ijk

∂ξ
−

1

Lij

∂Lij

∂ξ
−

1

Lik

∂Lik

∂ξ

)

(11)

Thus, the entries in the rotation matrixRijk can be expressed as

∂θ

∂ξ
=

sin(θ)

cos(θ)

(

1

Area4ijk

∂Area4ijk

∂ξ
−

1

Lij

∂Lij

∂ξ
−

1

Lik

∂Lik

∂ξ

)

(12)

This formulation reduces exactly to the formulation presented by Farhat but, as will be shown, more easily extends
to three dimensions.

C. Linear Spring Formulation in 2D

Following the same formulation for the torsion spring, the change in the length of edgelij with respect to the displace-
ments at the two endpoints can be expressed via a linear transformation

∆lij = R
ij
linearqij (13)

whereqij is the displacement at the two endpoints andR
ij
linear is the rotation matrix associated with the linear spring.

Referring to Figure 1, the length of the edge is

lij =

√

(xj − xi)
2

+ (yj − yi)
2 (14)

and the change in the length with respect to a change inxi is

∂lij

∂xi
=

−(xj − xi)

lij
= − cosα (15)
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Thus, the rotation matrix can be expressed as

R
ij
linear =











− cosα

− sinα

cosα

sin α











(16)

The stiffness matrix is simplyCij
linear = 1

l2
ij

. Converting these equations into forces, we get

F
ij
linear =

[

R
ij
linear

T
C

ij
linearR

ij
linear

]

qij

= K
ij
linearq

ij
(17)

where

Kij

linear
=

1

l2
ij

2

6

6

6

4

cos
2 α cos α sin α − cos

2 α − cos α sin α

cos α sin α sin
2 α − cos α sin α − sin

2 α

− cos
2 α − cos α sin α cos

2 α cos α sin α

− cos α sin α − sin
2 α cos α sin α sin

2 α

3

7

7

7

5

(18)

Expanding this matrix, the forces given in equations (3) and(4) are obtained.

D. Equilibrium of Forces

Following the derivation of Farhat, the momentM ijk produced by the change in the angleθ can be expressed by the
scalar equation

M ijk = Cijk∆θijk (19)

whereCijk is the stiffness of the spring. These moments can be converted into forcesF ijk for which the equilibrium
conditions must be determined by a linear transformation matrix T ijk determined from

F ijk = T ijkM ijk (20)

and equating the work done by the forces with the work done by the moments, or

F ijkT
qijk = M ijkT

∆θijk (21)

Plugging in equation (6) and using equation (20),

(

T ijkM ijk
)T

qijk = M ijkRijkT
qijk (22)

or
M ijkT ijkT

qijk = M ijkRijkT
qijk (23)

Thus, the transformation matrix is
T ijk = Rijk (24)

and the equation for the forces is

F ijk =
[

RijkCijkRijkT
]

qijk

= Kijkqijk
(25)

This derivation is valid for any angle in the two-dimensional mesh whether it is part of triangle or a higher order
element such as a quadrilateral; Farhat’s derivation assumes that each element is a triangle and thus considers the three
angles simultaneously. Thus, in the derivation presented herein,Rijk is a [6 × 1] matrix andCijk is a [1 × 1] matrix;
whereas in Farhat’s derivationRijk is a [6 × 3] matrix andCijk is a[3 × 3] matrix.
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III. Linear and Torsional Springs for Three-Dimensional Gr ids

A. Linear Spring Formulation in 3D

As was the case for two-dimensional linear springs, three-dimensional linear spring analogy replaces each edge with
a spring whose stiffness is inversely proportional to the length of the edge, raised to some powerp. To derive the
rotation matrix, consider the edgeeij between pointsi andj in Figure 5.

l

i

j
x

y

z

θ

Φ
k

ϕ

Figure 5. Diagram of Edge and Corner in 3D.

The length of this edge is

lij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (26)

and the change in the length based on a change inxi is

∂lij

∂xi
=

−(xj − xi)

lij
= − cos θ sin φ (27)

The other derivatives in the rotation matrix are similar to this one. Thus, the relationship between the forces acting on
an edge and change in location of the endpoints can be expressed as

F
ij
linear = K

ij
linearq

ij =
[

R
ij
linear

T
C

ij
linearR

ij
linear

]

qij (28)

where

R
ij
linear =





















−cosθsinφ

−sinθsinφ

−cosφ

cosθsinφ

sinθsinφ

cosφ





















(29)

andC
ij
linear = 1

l2
ij

.

B. Torsional Springs in 3D

In 3D, the torsion spring is applied to each corner of an element, whether it is a tetrahedron or a higher order element.
The corner depicted in Figure 5 is labeledc

ijkl
i and consists of 4 nodes~xi, ~xj , ~xk and~xl. In this figure, nodes~xj and

~xk appear to lie in thexy-plane, which is not necessarily true. Constructing 3 vectors~vij , ~vik, ~vil, originating at node
~xi and passing through the other three nodes, the volume of the tetrahedronV ijkl formed by these four nodes can be
expressed as

V ijkl =
1

6
~vil · (~vij × ~vik)

=
1

3
AijkH l

ijk

=
1

3
Aijk lil sinϕ

(30)
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whereAijk is the area of the triangular face associated with nodesi, j andk. Thus, the equation forsinϕ can be
expressed as

sin ϕ =
3V ijkl

Aijklil
(31)

and the equation forcosϕ is

cosϕ =

√

Aijk2
lil

2
− 9V ijkl2

Aijk lil
(32)

The derivative ofsinϕ with respect to a variableξ is then

∂ sin ϕ

∂ξ
= cosϕ

∂ϕ

∂ξ
(33)

and

∂ sin ϕ

∂ξ
=

∂

∂ξ

(

3V ijkl

Aijklil

)

=
3

Aijklil

∂V ijkl

∂ξ
−

3V ijkl

Aijk2
lil

∂Aijk

∂ξ
−

3V ijkl

Aijk lil
2

∂lil

∂ξ

=
3V ijkl

Aijklil

(

1

V ijkl

∂V ijkl

∂ξ
−

1

Aijk

∂Aijk

∂ξ
−

1

lil

∂lil

∂ξ

)

= sinϕ

(

1

V ijkl

∂V ijkl

∂ξ
−

1

Aijk

∂Aijk

∂ξ
−

1

lil

∂lil

∂ξ

)

(34)

so

∂ϕ

∂ξ
=

sinϕ

cosϕ

(

1

V ijkl

∂V ijkl

∂ξ
−

1

Aijk

∂Aijk

∂ξ
−

1

lil

∂lil

∂ξ

)

(35)

The variation ofϕ with respect tox, y andz for the four nodes that make up the corner are needed. This variation
forms the vectorRijkl

torsion, and the stiffness matrixKijkl
torsion is formed from the vectorRijkl

torstion along with the stiffness
coefficientCijkl

torsion = 1

sin2ϕ . Each corner in a tetrahedra consists of three different angles as determined from the
choice of the face and the opposite edge, so that the contribution from each angle in each corner must be considered.
Furthermore, for higher order elements such as prisms and pyramids, each corner of these elements must be considered
individually.

C. Solution Method

For both the two-dimensional and the three-dimensional cases, after summing up the forces at each node, the force
equation to be solved has the form

F = Kq = 0 (36)

where the displacements at certain boundary locations are fixed, or

q = q̄ onΓ (37)

After reindexing the nodes in the grid so that the fixed nodes are located at the front of the list, the displacement
vectorq can be expressed as

q =

[

qf

qm

]

(38)

whereqf are the fixed displacements andqm are the displacements for the movable nodes. Similarly the matrix K can
be expressed as

K =

[

Kff Kfm

Kmf Kmm

]

(39)

whereKff andKmm are square matrices andKfm = KT
fm. As a result, the equation to be solved is

Kmmqm = −Kmfqf (40)

These equations are solved using a Gauss-Seidel iterative method.
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IV. Examples

The following examples show the compression of a benchmark problem of a set of tetrahedra within a larger
tetrahedra, as an extension of the two-dimensional benchmark presented by Farhat, the translation of a cube within
a cube, similar to that performed by Murayama, and three different simulations of the free surface flow problem,
requiring the motion of the grid. These free surface flow problems include the flow around a NACA 0012 hydrofoil,
around a simple hull form called the Series 60Cb = 0.6 hull and around a more realistic hullform, representative of
naval destroyers.

A. Benchmark Cases

The first example is a three-dimensional benchmark case which is an extension of the two-dimensional benchmark
case used by Farhat5. The undeformed mesh consists of 9 nodes and 18 tetrahedra and is shown in Figure 6 and 7.
The node at the top of the mesh moves downward compressing thetetrahedra. Figure 6 shows the view from one of
the three sides of the mesh, and Figure 7 shows the mesh from the top.

Figure 6. Benchmark Case from the Side.

Figure 7. Benchmark Case from the Top.

The top node is forced downward compressing nodes. The entire mesh remains valid when using the torsional springs
as is shown in Figure 8, 9 and 10, where the mesh is compressed to 25%, 50% and75% of its original size. The linear
spring analogy fails when the grid is compressed by more than30%, at which point the lowest node in the interior of
the mesh passes through the bottom face of the mesh.

Figure 8. Benchmark Case Compressed by 25%.

Figure 9. Benchmark Case Compressed by 50%.
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Figure 10. Benchmark Case Compressed by 75%.

In Figures 11 and 12, the original and deformed grid for a cubeof length 1 within a cube of length 3 are shown.
The inner cube is pushed upwards by a distance of 0.6. The resultant mesh is still valid (i.e., the volumes of each
element are positive), without the need to reconnect the nodes or regenerate the grid.

Figure 11. Original Cube within a Cube.

Figure 12. Deformed Cube within a Cube.

B. Applications to Free Surface Flows

The first application deals with the flow of water past a two-dimensional submerged hydrofoil, which creates water
waves. In order to simulate the flow of water, the interface between the water and the air must be allowed to move.
For surface tracking methods, the grid must also be moved to match the free surface. The flow past the NACA 0012
hydrofoil has been calculated experimentally, and severalresearchers have run simulations for this geometry to validate
their free surface flow solvers. Hence, this case is an excellent choice as an initial test case for free surface simulations.
Burg7 provides a full discussion of the free surface tracking algorithm, which uses the torsional spring method to move
the mesh.

Shown in Figures 13 and 14 are the original and deformed unstructured grids around the two-dimensional hydro-
foil. The quality of the deformed grid is roughly the same as the original grid, despite the deformation. This simulation
was performed on a two-dimensional grid that was extruded into three-dimensions, and the grid movement was per-
formed on the three-dimensional grid. As can be seen from thefigures, the deformed grid has similar grid quality as
the original grid.
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Figure 13. Original unstructured grid about NACA 0012 hydrofoil.

Figure 14. Deformed unstructured grid about NACA 0012 hydrofoil.

The second test case deals with the Series 60Cb = 0.6 hull form. This hull form is often used by researchers
as a validation case since the geometry is relatively simpleand the flow features are not complicated. There is also a
significant amount of experimental data available for this hull form, for comparison purposes. The main reason that
this case is shown within this paper is that the grid as the stern of the ship is extremely distorted, highlighting the
ability of the grid movement algorithm to handle complicated mesh deformations.

Figure 15. Contours of Free Surface Elevations for Series 60Hull form.

In Figure 15, the free surface contours are shown for the Series 60 hull form, where the red and white values are
the highest elevations. The flow is from left to right, and at the stern of the ship, the flow rises greatly, as it does at the
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bow. At the bow of the ship, the geometry of the ship rises vertically and does not present much difficulty for the grid
movement algorithm. At the stern of the Series 60, the geometry leaves the water at a sharp angle, so that if the water
rises by 1 unit vertically, a node of the surface of the ship moves by approximately 2 units horizontally. Thus, the grid
is greatly stretched in the stern region. The elements alongthe centerline for the original grid and for the deformed
grid are shown in Figures 16 and 17. In Figure 17, the grid is clearly stretched upward and to the right, but the grid is
still a valid grid with no negative volumes.

Figure 16. Original Series 60 Grid.

Figure 17. Deformed Series 60 Grid.

The final example deals with the David Taylor Model Basin Model 5415 hull form, which is a prototypical hullform
for naval destroyer class ships. It has many of the features of actual ships such as a protruding bow, a bulbous bow
sonar dome, a tapered stern region where the propellers, shafts, struts and rudder would be placed, and a transom stern.
The transom stern is of particular importance for the free surface calculations. The flow is the stern region is highly
complicated and is strongly dependent on the Reynolds number, which affects the free surface and hence the forces
acting on the vessel. The flow in the stern makes gridding the region complicated as well as simulating the flow with
a free surface flow solver where the grid must be moved to matchthe free surface.
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Figure 18. Free Surface Elevations for the DTMB Model 5415.

Figure 19. Top View of Free Surface Elevations in Stern Region.

Figure 20. View of Free Surface Elevations from Stern of Ship.

The free surface for the DTMB Model 5415 is shown in Figures 18, 19 and 20, showing the overview of the
flow patterns as the flow travels from left to right. Again, thehigher elevations are in red and white while the lower
elevations are in blue and black. The familiar Kelvin wave pattern originating at the bow can be seen, and the “rooster
tail” at the stern is also apparent. The close-up in the sternregion in Figure 19 shows the complicated free surface
structures in the stern region, and in Figure 20, the three-dimensional effects of the free surface can be seen in the stern
looking away from the ship, where the ship’s hull is shown in gray. In particular, the flow drops dramatically behind
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the corner of the stern and the port and starboard sides, and then rises again at the centerline. This flow behavior
greatly changes the shape of the grid in this region.

Figure 21. Grid for Original Model 5415.

Figure 22. Grid for Deformed Model 5415.

A comparison of the grids along one cutting plane of the grid is shown in Figures 21 and 22. The cutting plane is
parallel to the centerline and is shifted so that it cuts through the depressed region behind the intersection of the stern
and port side of the ship. The grid is compressed at the stern by approximately 60%, and the deformation in the stern
region is quite complicated being both compressed and expanded in neighboring areas.

Both the Series 60 hull form and the DTMB Model 5415 series hull form have grids that include prisms and
pyramids near the viscous surfaces. The points nearest the hull are moved rigidly with the deformations on the viscous
surfaces, as the free surface rises and falls. However, outside of a certain distance away from the viscous surfaces, the
nodes move in response to the forces acting through the torsional and linear springs within the mesh. From the success
of these two simulations, this torsional spring method clearly can be applied to elements other than tetrahedra.

V. Conclusion

A three-dimensional version of the torsional spring methodhas been presented that considers the three-dimensional
contributions of each element without reducing the elements to two-dimensions. In order to derive this formulation, the
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two-dimensional linear and torsional springs formulations were recast so that the extension to three-dimensions would
be obvious. This formulation is extendible to other elements besides the basic tetrahedron, since it only considers the
corners of each element.

This algorithm is demonstrated on two benchmark cases, dealing with a three-dimensional extension of Farhat’s
simplest benchmark case and with a cube within a cube. In bothcases, the grid is compressed significantly farther
than could be accomplished with linear springs. Then the grid movement algorithm is demonstrated using three free
surface flow simulations, including flow past a submerged hydrofoil, flow around the Series 60Cb=60 hull form which
has a tapered stern region, and flow around the DTMB Model 5415series hull, which has a transom stern. In each
case, the deformed grid remains valid even after moderate tosevere distortions of the grid.
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