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The Method of Manufactured Solutions is a code verification nethod that modifies the governing equations
solved within a code by adding a source term to drive the solin towards a predetermined analytic function.
By solving the modified equations on a sequence of grids andmparing the differences between the converged
solution and manufactured solution, the order of accuracy 6the implementation can be determined. The
method of manufactured solutions combines the benefits of ogparing with an exact solution without the need
to derive an exact solution to the governing equations. Hower, in its current form, highly converged solutions
on a sequence of grids are required which can be quite costlynd difficult to obtain. In this paper, the method
of manufactured solutions is used in a different fashion tharemoves the need for converged solutions by
considering only the residual of the discretized governingequations rather than the solution, thus avoiding
the computational cost and difficulties inherent in obtaining highly converged solutions. Furthermore, this
new approach is quite similar to the method for analyzing a décretization method to determine the order
of accuracy of that method via Taylor's series expansions. Ais new approach is demonstrated to yield the
same order of accuracy as the original method of manufacture solutions using three different cases - one-
dimensional porous media equation, one-dimensional St. ¥iant equations and two-dimensional unstructured
Euler simulations.
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[. Introduction

When a computational simulation is used to approximate flysips of a particular problem, the computer yields
a set of numbers that represent approximations to physiaaitifies. The computer, however, does not tell the user
whether the numbers are correct or realistic. How does otegrdae whether those numbers are consistent with the
governing equations, and how does one determine how aedti@e numbers are? These questions are the principle
concerns of verification and validation.
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Two different classes of error exist in a computational $ation - errors associated with modeling the physical
phenomenon with a mathematical expression and errorsiasswith solving a continuous mathematical expression
on a discrete set of points using a finite precision machinedeGralidation addresses the first class of error and
involves comparing computational results with experiraérgsults to determine the usefulness of the computational
tool in predicting the physical phenomenon. Code veriftrats the process of quantifying the error introduced by
discretizing the continuous governing equations and sgltiem on finite precision machines.

Code verification is the process of identifying sources obrewithin a numerical simulation. Typical sources of
error include round-off error resulting from the use of #nfirecision machines, oscillations in the solution due to
the lack of a strongly converged solution and discretizagior associated with the choice of discretization method
Round-off error for steady-state simulations is probaliliitte concern due to the self-correcting nature of steady
state simulations. Oscillations in the solution near cogence are often noticed for complicated geometries with
complicated physics, especially in three-dimensional o for turbulent flow, and the error associated with these
oscillations can be estimated by banding the oscillatioosmfabove and below. Discretization error is the error that
results from the differences between the discretized émuand the continuous partial differential equation, amd f
most simulations, this error is the critical one to analyze.

Code verification is typically accomplished via a grid refment study where the solution on a sequence of grids
is compared either with a known exact solution or with theisoh on a highly resolved grid. As the grid is resolved,
the error between the solution on the current grid and thetes@ution should reduce at a rate consistent with the
order of accuracy of the method. By demonstrating that s is achieved asymptotically, the code can be deemed
“verified”. However, there are many difficulties with gridfireement studies. First, exact solutions may be difficult to
obtain and may result in closed-form solutions involvinfiriite series, which are problematic to compute numerically
But without an exact solution, there is no guarantee thasdtgtion to which the code converges is the solution to the
governing equations, even if the order of accuracy is detnaiesl. For instance, if a multiplicative factor for one of
the terms in the governing equation is omitted in the codm the solutions may converge well, but they will clearly
converge to the wrong answer.

The Method of Manufactured Solutions (MMS), developed kgirterg and Roaché, is a methodical approach
to determine the order of accuracy of the implementation ofethod to discretize a partial differential equation
(PDE). This approach combines the best features of gridengfemt studies and comparisons with exact solutions,
by introducing a source term that drives the solution towadiven analytic function. By comparing the converged
solution on a sequence of successively refined grids witindreufactured exact solution, the order of accuracy of the
solution and hence of the implementation can be determidatike a typical grid refinement study, the solution on
these grids should converge to a known, analytic solutiad,unlike comparison with exact solutions, the analytic
solution need not be a solution to the governing equatiantiesmethod of manufactured solutions can be applied to
complicated sets of equations on complicated geometries.

This method was originally proposed for code verificatiostofictured flow solvers on structured grids, typically
grids with little geometry complexity, such as squares dvesu As such, the sequence of grids generated for the
refinement study did not need to be produced by grid doubliigwever, for more realistic geometries, Edzas
introduced the concept of geometrically similar grids, vehthe elements in the refined grid union to form each
element in the coarse, so that grid doubling is required.s Tiethod of manufactured solutions has recently been
extended to unstructured solvers on structured gmatsl to unstructured solvers on triangular unstructureastfi

In order to avoid the computational cost of a grid refineméuatlys and the need to obtain highly converged
solutions, a new version of the method of manufactured moisithas been derived that directly compares the error in
the implementation of the discretization method. When ttieioof accuracy of a discretization method is analyzed
algebraically, the error in a discretization method is defias the difference between the discretization method and
the partial differential equation when acting upon a smamthlytic function. Typically, the order of accuracy is
found via a Taylor’s Series expansion of the discretizedadiqus about a common point, and the result is compared
with the partial differential equation. However, the ordéaccuracy derived from a grid refinement study compares
the differences in the converged solutions, which reptsstme effects of the discretization method but does not
directly interrogate the discretization method. This neawsion of the method of manufactured solutions isolates
the discretization error inherent in the discretizatiorthd, and hence can calculate the order of accuracy of an
implementation without the need for a converged solutiofooany iterations of the algorithm towards convergence.

This paper first presents the important concepts for grideefent methods to obtain an estimate of the order of
accuracy, then the original formulation of the method of nfantured solutions is presented, followed by the residual
formulation of the method of manufactured solutions. Aftee methods are presented, these methods are tested
on three different sets of equations - the 1D porous mediatéay the 1D St. Venant equations and the 2D Euler
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equations.

Il. Code Verification Methods

To determine the accuracy of a numerical implementatioo,nvethods are predominate, 1) comparison with an
exact solution and 2) use of grid refinement studies. In tiserfiethod, a simple geometry with an known, relatively
simple analytic solution is used for comparison with the pugal code. The assumption is that as the typical grid
spacing tends to zero, the results from the numerical cotlecanverge to the exact solution. By comparing the
difference between the exact solution and the numericatisol on two different grids, the order of accuracy can be
obtained. Some quantity of interesis measured, such as the drag for the geometry. So for the¢ sodation, the
exact value of the quantitf,....: is known and the assumption that for a grid with typical gpdangh, this quantity
can be expanded via Taylor’s series expansion as

I(h) = legact + Alh1 + A2h2 + A3h3 + ... (1)

If the code implementation is second-order accurdtewill be zero andA, will be non-zero, as may be the other
coefficients. However, since only a finite number of simolasi will be performed, the Taylor’s series is truncated,
which may result in non-zero entries for each term in theeserAs a result, another form of the expansion is often
used, or

I(h) = lezact + AhP (2)

where A andp are unknowns. If the code implementation is second-ordeurate, the exponemtwill converge to
2.0 as the grid is refined, because the influence of the higider terms in the expansion will become increasingly
less noticeable.

If an exact solution is used, thép,,.; IS assumed to be known, then two unknowns exist, which areaéfficient
A and the exponent, so the solution on two grids is necessary. For instanchgiekact solution is known and two
grids with typical grid spacings; andh, are used to generate a numerical valueli@r; ) andI(hs), then solving to
removeA from the equation yields

<@)p _ I(hQ) _Iemact (3)
hl I(hl) - Iemact
and the order of accuracy is approximately
I(h2)=Iczact
B log (I(hl)—lemcg) 4)

p =
o )
If the exact solution is not known, then the solution on thdiéerent grids with spacing.;, ke andhg are
required, or
I(hl) = lezact + Ahllj
I(hQ) = lezact + Ahg (5)
I(hB) = lezact + Ahg

Typically, the spacings are related, in that= rh; andhs = rhy wherer is some refinement ratio. Using a constant
grid refinement ratio of, then the order of accuracy is

I(ha)~I(ha)
_ log (1<h2>-1<hf>)
P T o)

(6)

When using a grid refinement study, the assumption is thafritie lie within the “asymptotic range”, which means
that the primary source of error in the simulation arisesfthe leading order error term and that the other sources
of error are insignificant. In reality for complicated twayinsional and for most three-dimensional simulations, th
size of grid required to be in the “asymptotic region” may bxeessively large, so the assumption that the leading
order error term is the dominant error term may not be valtlilus] more than the minimum number of grids is often
used to determine the order of accuracy. When using 4 or nrads, geveral different combinations of grids can be
used to determine the order of accuracy and more complifateudilae, such as those reported by E@an be used,
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which will probably lead to significant differences in th@ogted order of accuracy. The warning, then, is to be aware
of these limitations and assumptions and to take care whag tleese methodologies.

Furthermore, the means by which a grid is refined can affecotiserved order of convergence. £Ecaed the
term “geometric similarity” to describe the types of gritistt he used in his grid refinement study. One of the main
characteristics of geometrically similar grids is thatlealement in the coarse grid is subdivided into smaller efgme
that union to form the coarse element. Hence, the volumeflofeince is maintained in a consistent manner from one
grid to the next grid, and the faces of the control volume i toarse grid are exactly replicated in the fine grid.
Geometric similarity is achieved for one-dimensional gy subdivided each interval into an integer number of sub-
intervals, and it is achieved for two-dimensional triaragetl unstructured grids by h-refinement without any quality
improvements.

[1l. Method of Manufactured Solutions

The method of manufactured solutions modifies the goveramgations so as to drive the solution towards a
predetermined “manufactured” solution. The continuousigadifferential equation has the form and dependencies
of

L@ x.t) = f(x.1) )
with boundary conditions
B(Q,x,t) = g(x;t) (8)

whereQ is converged solutiony represents the computational domaffy, ) andg(x, t) are source terms that only
depends on the computational domain and on time, but noteosatution). The implementation of the source terms
can be verified easily by a grid refinement and comparison thigrexact source terms, without solving for the flow
variables().

Each flow variable representedhis set to some continuous function such as the exponentgheror cosine
functions, which will be terme@®(z, y, z). These “manufactured” solutions are plugged into the guwnegrpartial
differential equation to generate a new set of source tennigh modify the governing equations to

L(QaXat) :L(QeaX7t) )

and

B(Q,x,t) =B(Q x,1) (10)
The geometric source ternf$y, t) andg(x, t) cancel out in the process, but as their implementation i teagerify,
this cancelation is acceptable.

Upon discretization, the right-hand-side can be evaluexedtly when the methodology and assumptions behind
the discretization method are evaluated. For instancenwhefinite volume method is used, the partial differential
equations are integrated over the control volume, and whefitite element method is used, the partial differential
equations multiplied by a weight function are integratedrazach element. These integrals can be evaluated exactly
because of the nature of the manufactured solutions, edlyeifithe manufactured solutions are exponentials or
trigonometric functions. Thus, using a symbolic manipolasoftware package such as Mathematica, these integrals
can be evaluated exactly and implemented without modifinatito a FORTRAN or C code.

Because of the source terms, the discrete solution végt@mhould converge to the exact solution, assuming a
proper implementation of the discretized governing equesti Thus, the order of accuracy of the implementation can
be verified by comparing the difference between the exaatisolQ¢ and the converged soluti@p® via some norm,
such as thd€.;-norm, or

N
Error1(Q°,Q°) =Y 1Q5 — Q5|V; (11)
j=1
whereNN is the number of nodes in the gri@;; represents the exact solution evaluated at the locatiooaé nand
V; is the volume associated with noglelf the order of accuracy matches the theoretical order ofiexy, then the
errors in the implementation are no worse than the errotsdrdiscretization method, and the code can be said to be
“verified”.

The manufactured solution can be any convenient functidh thie properties that the function is differentiable
enough so that the leading order error terms in the Tayleries expansion are non-zero. For instance, for a second-
order partial differential equation, such as the heat egugand a third-order accurate discretization, then theuna
factured solution must have at least five continuous devesto account for the two spatial derivatives in the PDE and
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the non-zero third-order error term which can be found viegladditional derivatives. Typically, exponentials,ines
and sines are convenient since they are infinitely difféabihd, but under some circumstances, the anti-derivatif’es
these functions when the PDE is applied to them may not exishose cases, high-degree polynomials will suffice.
The choice of manufactured solution does require sometéff@void singularities such as division by zero or taking
the square root of a negative number in some regions of thaithom

IV. Residual Formulation of the Method of Manufactured Solutions

The original formulation of the method of manufactured sohs requires the calculation of the solutigji
on a sequence of successively resolved grids, which can ipwationally expensive. Fortunately, the required
information is already available, without the need foratérg towards the solution. In particular, by plugging the
discrete values of the exact solution for gxidinto the discretized governing equations,

Ri(Q°) = Ri(Q"+ Q° - Q") = Ri(Q" + AQ")

= Ri(Q") + %13 (@) (AQ) +0 (AQY)* (12)
OR,

i i i\ 2
= 50 @) (8Q) +0 (2@

whereAQ' = Q¢ — Q' andR;(Q%) = 0, since@’ is the converged solution for the equations on grid Thus, the
error represented big; (Q¢) contains the same error term as the difference between #ut &xd computed solutions.
If the residual linearly depends on the unkno@nthen Eqn (13) reduces to

. OR;
Where%—%‘(Qi) is a constant matrix dependent only on metric terms, and ttier@f accuracy of the residual is
clearly the same as the order based on the converged sollitging this reasoning, if the residual is a polynomial
in Q, as is the case with many sets of governing equations iraipitie Navier-Stokes equations, then the additional
terms represent higher order terms in the expression, antb#lding order error term is the same. If the residual
includes ratios of these flow variables or other combinat®rch as square roots that can generate singularities, then
the manufactured solution must avoid these singularitiesshich case the residual can be written as a convergent
Taylor’s series expansion, and the order of accuracy imatgtermined from the leading term.

Because of the equivalence of the residual form and ther@figormulation of the method of manufactured so-
lutions, only the residual equations resulting from theditized governing equations and the source term from the
manufactured solution needs to be evaluated, and it onlgs&ebe evaluated once, which is quite inexpensive in
comparison to the cost of obtaining highly converged sohgion a sequence of successively refined grids. In fact, de-
termining the order of accuracy directly from the residaaher than from the converged solutions mimics the method
for determining the order of accuracy of the stencil via aldgy series expansion. When one determines the order of
accuracy of a stencil, the terms are expanded about a comaiatiptime and space assuming a sufficiently smooth
function. After cancelations, the continuous governingaimpn is recovered, assuming a consistent discretization
and the extra terms are the leading order error terms anehagtler error terms. This methodology presented herein
works in a similar fashion.

(@)AQ! (13)

V. 1D Porous Media Equation

The porous media equation governs the flow of water throughysomedia such as groundwater through an
aquifer. It is governed by Darcy’s law that states that the floproportional to the change in the pressure. Perhaps the
simplest example is the flow of water through an aquifer dubégpumping action at a well. For this case, the flow
is assumed to be radially symmetric about the well of radiysand flows through a confined aquifer with the radius
of influenceR, (i.e., the outer boundary). Under these assumptions, #sspre within the aquifer is the piezometric
headh(r,t) and the continuity of mass equation can be reduced to

SOh  9*h  10h
Tt~ a7 ror
whereS is the storage coefficient arid is the transmissivity. For steady-state flow, the tempoegivdtive is zero.
Assuming a drawdown at the well éf, — H,,, whereH,, is the head at the outer boundary diid is the head at the

(14)
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well, then the solution to the governing equations is
(Hw - HO)ZOQ(T/RO)
log(Rw/Ryo)

For the numerical discretization, the Galerkin finite elatmaethod was used on a one-dimensional uniform grid. The
stencil for node is obtained by multiplying the governing equation by thegiifunctiong; and integrating over the

domain of influence, or ,
it 0“h  10h
/”] o [W + ;E} dr (16)

Upon discretization and after dividing through by the teremgrated by the temporal derivative (i.@f:’*;ﬁ), the
discretization of each term at each interior node was

b~ hivi—h;  hi—h; 1 2
e Ari+1 A’I’i ATZ'+1 + A’I’i

hy hiy1 — hy Tig1 hi — hi—1 T 2
— R | A Tl —Ar; ———— |Ari —ri—al
r <(A7”i+1)2 {T i n< ri > i H} " (Ar;)? { e (Ti—1>D Arip1 + Ary

whereh,., is the second spatial derivativeof Ar; 1 = r;11 —r; andAr; =r; — 1.
To determine the order of accuracy of these stencils, ttsauilae are expanded using Taylor’s series expansions
about a common point, such As The stencil for the terng% reduces to

h(r) = H, + (15)

(17)

Ari1 — Arg Ar}yy — AriAr + Ar?

hTT —"_ hTTT 3 hTT’I‘T 12

+O(Ar},, Ar) (18)

The stencil for the term,. /7 is

hr |: hT hT‘T

T EE T

hT hT‘T hT‘T’I‘

52 " 127 T 13, (Ar2,, — Ari Ay + Ar?)+O(ArS, Ar}) (19)

:| (ATZ'+1 — A’I’l)—i-

The term(Ar;+1 — Ar;) is zero for uniform grids and much smaller thAm for grids whose spacing grows geomet-
rically, so that the influence of this term is undetectablakimg this discretization second-order accurate. In audit
the third order term in both expansions has a factof/f;; — Ar;), so that the third order error term is zero for
uniform grids.

For this problem, the well had a radius of 0.02 units and therdaoundary was set at 1 units. The piezometric head
at the well was 0, and the head at the outer boundary was 5 wiitsh allowed for a Dirichlet boundary condition.
Using the exact solution as the target for a traditional gefihement study, the error is measured as the difference
between the highly converged computed solution and thet sphtion, or

Tit1 —Ti—1

N
Lirror = Z |hlewact - héomputed' f (20)
=1

Using this definition for the error, the order of accuracy barverified as second-order, as is shown in Table 1, where
N is the number of intervals. Using equation (4), the orderagiuaacy based on these errors is shown in the right
column, and asymptotically approaches 2.

\ N \ Error Accuracy

100 | 0.02722986504 NA

200 | 0.00676605012 2.00880
400 | 0.00168880297 2.00231
800 | 0.00042202945 2.00059

1600 | 0.00010549746 2.00014
Table 1. Error between Computed and Exact Solution.
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Since an analytic solution exists for this set of equatitims,choice of function for the method of manufactured
solutions could be that function. But for illustration poges, the manufactured solution was chosem(as = r1°.
The source term for this function, then, is

1079
r

= 1007 (21)

hy
By + — = 90r® +
r

Applying the finite element method to this source term, theatrdoution to the discrete residual is

/Tm 6110073 dr — 90710 + 107k, — 1007177 N 90r}° +10r%) — 100r; 17

22
9AT‘Z‘+1 9AT¢ ( )

Ti—1

This source term is simple enough to calculate by hand, bunfire complicated functions, symbolic manipulation
software such as Mathematica can be easily used to perfasnattk, and then output the results in FORTRAN or
C format for direct copying into the code. After implemengtithis source term, the same example was run using
Dirichlet boundary conditions consistent with the mantdeed solution. The error based on the residual formulation
of the method of manufactured solutions is shown in Tabled?isdefined as

N
L'}‘esidualerror = Z |R682duall| (23)
i=1

Since the residual already includes the area contribuitiasmnot needed for the error calculation. As can be seen in
Table 2, the order of accuracy from one grid to the next apgresi2 as the grid spacing is halved, which demonstrates
second-order accuracy.

‘ N ‘ Residual Error‘ Accuracy

100 | 0.00064080995 NA

200 | 0.00016296669 1.9753
400 | 0.0000410921Q 1.9876
800 | 0.00001031714 1.9938

1600 | 0.00000258484 1.9969
Table 2. Residual Error For Porous Media Equation.

Similarly, the error between the converged solutions aedtanufactured solution is shown in Table 3. This error
also demonstrates second-order accuracy. However, due ¢onditional stability of this algorithm, the computaiéd
cost of obtaining the converged solutions was quite largen dor this one-dimensional problem; whereas for the
residual formulation, the computational cost was the cbpedorming one iteration of the flow solver.

‘ N ‘ Variable Error | Accuracy

100 | 0.00009288767 NA

200 | 0.00002316852 2.00332
400 | 0.00000578884 2.00082
800 | 0.00000144699 2.00021

1600 | 0.00000036173 2.00005
Table 3. Variable Error Using Method of Manufactured Sauos.

Another advantage of the residual form of MMS is the abildyigolate and study each component of the flow
solver. For instance, the order of accuracy for the first tepmcan be studied without the influence of the other
term. Or, if more complicated boundary conditions are inggl$heir influence and order of accuracy can be studied
without reference to the interior nodes. In particular,tfee termh,.,., the residual form of MMS using the function
h(r) = r19 results in errors that are on the order of machine precidighen investigated further, it was discovered
that for a uniform grid, this solution is an exact solutiortted resultant MMS equation shown in Egn (23), or

hig1 — 2h; + hiog = 1870 +r}0y + 710 — 1079 (rigs +7ri-1) (24)
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whenh;y = ri?), hy = r}° andh,_; = r}°;. When the second terr,/r was studied, the error using the
residual formulation reduced at a rate consistent with arsgtorder discretization. When the flow solver was run
with only this term activated, it was discovered that th@ased stencil is unconditionally unstable whether it is an
implicit or explicit discretization, which agrees with then Neumann analysis for this stencil. Hence, the method
of manufactured solutions could not be used in the originahfilation to determine the order of accuracy of the
implementation of.,. /r, but the residual formulation could be used.

VI. 1D St.Venant Equations

The St. Venant Equations model flow in channels and riversrapesent a simplification of the Navier-Stokes
Equations by assuming a hydrostatic pressure distriburtittme vertical direction. The flow variables are the dejpth
and the discharge rage and the coefficients are Manning’s friction coefficientgravity g, the bed slop&, and the
hydraulic radiusk,,. The one-dimensional St. Venant Equations can be exprassed

oh  Op

ot Tar 0 5)
ap 0 (p* 1 , n2p?
L (v gn?)=gn(s, - ——
ot + Ox (h + 29 gh (5 h2RY3

These equations were discretized using the flux differepliisg finite volume method similar to the method used
by Whitfield” for the 2D Shallow Water Equations. Using a manufacturedtiasi of h(z) = =%/ andp(z) =
e*/1500 'where 1500 is the length of the channel, the code was vedfiedsequence of grids using &s-norm of the
difference between the computed and exact manufacturaetiastd, or

N
E(Q°,QY) = Ay (|h(x5) = h'(ay)| + p°(25) = p'(x;)]) (26)
§=0

whereAz; is the length of the control volume associated with ngd& he results of this error norm, which is the
result of the original formulation of the method of manutaed solutions is shown in Table 4.

‘ N ‘Variable Error| Accuracy | Comp. Cost

100 | 0.042862708| N.A. 5.32

200 | 0.010705630| 2.00135 18.26
400 | 0.002675181| 2.00066 69.24
800 | 0.000668642| 2.00033 235.52
1600 | 0.000167141| 2.00017 910.08

3200 | 0.000041783| 2.00008 1588.71
Table 4. Error based on Original Formulation.

where the third column represents the order of accuracy sndimed via Equation (4). As the grid spacing is
successively halved, the order of accuracy of this impldatem approaches second order. In the fourth column, the
computational cost (in seconds) of obtaining a highly coged solution is provided and shows that the cost for the
largest grid is almost half an hour.

Using the residual form of the method of manufactured sohgj the error is thé-norm of the residual at each
grid location for the exact solution, or

N

By(Q%) =Y |R1(Q%); + |R2(Q%); (27)

J=0

whereR; and R, are the results for the discretization of the first and se@mehtion in the St. Venant Equations.
These errors are tabulated in Table 5, and again demonsteted-order accuracy. From this example, the order
of accuracy is the same for the residual form and the oridgorahulation of the method of manufactured solutions,
indicating that the order of accuracy calculated from tredheal form of the method of manufactured solutions is as
useful as the order of accuracy calculated from the origorahulation.
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‘ N ‘ Residual Error | Accuracy | Comp. Cost

100 | 0.000729183538 N.A. 0.00363
200 | 0.000188734839 1.94992 0.00723
400 | 0.000048006195% 1.97507 0.01445
800 | 0.000012105478 1.98756 0.02882
1600 | 0.000003039431 1.99379 0.05775

3200 | 0.00000076149% 1.99689 0.11564
Table 5. Error based on Residual Form.

The fourth column of Table 5 shows the computational costs@oonds) of the residual formulation. These
costs are orders of magnitude less than the cost of the atifirmulation, due to the fact that the residual must be
calculated only once for this method, instead of repeataslithe solver iterates to obtain the converged solution. In
addition, the Jacobian calculation is not needed, and tlii@o to the matrix equation is not required, both of which
reduce the computational cost. This computational savivij®e even more pronounced when applied to two- and
three-dimensional simulations.

‘ N ‘ Variable Error

100 | 0.000142583963 N.A.

200 | 0.000017693074 3.01055
400 | 0.000002212223 2.99961
800 | 0.000000276456 3.00038
1600 | 0.00000003455(0 3.00029

3200 | 0.000000004318 3.00025
Table 6. Third-Order Error based on Original Formulation.

Accuracy

As further demonstration, if the slofgg, and the friction coefficient are set to 0, then third and fourth order
compact stencils are available. Using the MUSCL-scHeméhird order stencil can be obtained. The source terms
must be eliminated since their discretization is only seeorder accurate and would dominate the higher-order ef-
fects. TheL;-error based on the difference between the exact and codhpatetions is shown in Table 6, and the
error based on the residuals is shown in Table 7. Again, bethods show a third-order convergence rate.

\ N \ Residual Error | Accuracy

100 | 0.0000035165437 N.A.

200 | 0.0000004362233 3.01102
400 | 0.0000000543199 3.00551
800 | 0.000000006777) 3.00276
1600 | 0.0000000008463 3.00138

3200 | 0.0000000001058 3.00050
Table 7. Third-Order Error based on Residual Form.

A fourth-order stencil can be obtained by using two valuethéoleft and to the right of each interface. However,
this stencil is not stable, so that converged solutionsttnat be compared with the exact solution. However, the order
of accuracy of the stencil can be determined via the residual of MMS, as is shown in Table 8. As these results
show, the fourth order accurate scheme is so accurate gaaifthence of round-off error is seen starting at the grid
with 800 nodes, and this influence dominates for the two messilved grids. However, for the first three grids, the
order of accuracy is clearly fourth order.
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‘ N ‘ Residual Error | Accuracy

100 | 0.00000000459628 N.A.
200 | 0.00000000028494 4.0117
4
|

400 | 0.00000000001774 4.0056
800 | 0.00000000000201 3.1417
1600 | 0.00000000000326 N.A.

3200 | 0.00000000000637 N.A.
Table 8. Fourth-Order Error based on Residual Form.

VII. 2D Unstructured Euler Equations

The final example deals with an two-dimensional unstructfirgéte volume flow solver of the steady-state incom-
pressible Euler equations, which are show below

@ + @ =0
oxr Oy
ow?+P)  Ouww
o + By 0 (28)
duv n o(v? + P) _o
ox oy

whereu andv are the velocities in the andy directions andP is the dynamic pressure. The manufactured solutions
were chosen to be exponentials as is shown below

Pe — 621+2y
u® = e*tv (29)

The computational domain was an equilateral triangle sidbelil equally into equilateral sub-triangles, as is shawn i
Figure 1. In addition, Murati® applied this approach to a triangulated square grid and tidsaout a NACA0012
airfoil. The sequence of grids was obtained by using h-refer where each edge was split in the middle and each

triangle was replaced by 4 smaller triangles.

A\ VAN
INONONONININA
JAVAVAVAVAVAVAVAN

A AN
INONINININONINININININ
INONININININININININININEN
JAVAVAVAVAVAVAVAVAVAVAVAVAVAN
INONINONINONENINONINONINININGN
NN NNNNNNNNNNNN

Figure 1. Equilateral Triangle.

The number of nodes and the number of triangles for each ggbawn in Table 9, ranging from excessively coarse
to highly refined.
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Grid Level ‘ Nodes‘ Triangles

1 15 16

2 45 64

3 153 256

4 561 1024

5 2145 4096
6 8385 16384
7 33153 | 65536

Table 9. Nodes and Triangles in Equilateral Triangles.

Both inviscid and viscous simulations were studied usint Ibioe original and residual forms of the method of man-
ufactured solutions. The flux differencing formulation béffinite volume method was used for these discretizations,
and are further described by Hyahfs

The results for the inviscid case are shown in Tables 10,1dd 12 using ar.,; norm for the difference between
the computed solutions and the exact solution for eachblarid’he order of accuracy is clearly converging towards
2, even though for the coarser grids the observed order ofacgis different from 2.

Triangles| PressureP Error \Accuracy\

16 0.0000105048 N.A.
64 0.00000247905 2.083
256 0.00000627157 1.983
1024 0.00000159472 1.975
4096 0.000000402268| 1.987
16384 0.000000101005| 1.994
65536 0.0000000253041 1.997
Table 10. Pressure Error for Euler Equations.
Triangles| X-Velocity u Error | Accuracy
16 0.00000174646 N.A.
64 0.000000615283 1.505
256 0.000000202460 1.604
1024 0.0000000649553| 1.640
4096 0.0000000195274| 1.734
16384 0.00000000540187 1.854
65536 0.00000000142033 1.927
Table 11. X-Velocity Error for Euler Equations.
Triangles| Y-Velocity v Error Accuracy
16 0.00000391432 N.A.
64 0.000000678723 2.528
256 0.000000133879 2.342
1024 0.0000000389832 1.780
4096 0.0000000117515 1.730
16384 0.00000000331684| 1.825
65536 0.000000000883976 1.908
Table 12. Y-Velocity Error for Euler Equations.

The error associated with each equation in the set of gavgeTtuations is shown in Tables 13, 14 and 15. The
order of accuracy seen from the residual equations mathkestler of accuracy from the converged solutions, and it
is better behaved in that the error ratio monotonically evges towards the ideal value and the influence of the higher
order error terms can be clearly seen.
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Triangles| Continuity Residual Errod Accuracy

16 0.0009337660 N.A.

64 0.0003753253 1.315
256 0.0001136083 1.724
1024 0.00003101255 1.873
4096 0.000008088478 1.939
16384 0.000002064616 1.970
65536 0.0000005214924 1.985

Table 13. Continuity Residual Error for Euler Equations.
Triangles| X-Momentum Residual Err0|L Accuracy

16 0.0002495181 N.A.

64 0.00008251329 1.596
256 0.00002329190 1.825
1024 0.000006166476 1.917
4096 0.000001585209 1.960
16384 0.0000004017942 1.980
65536 0.0000001011372 1.990

Table 14. X-Momentum Residual Error for Euler Equations.
Triangles| Y-Momentum Residual Errof Accuracy

16 0.0003263460 N.A.

64 0.0001035595 1.657
256 0.00002876701 1.848
1024 0.000007564698 1.927
4096 0.000001939237 1.963
16384 0.0000004909055 1.982
65536 0.0000001234934 1.991

Table 15. Y-Momentum Residual Error for Euler Equations.

VIIl. Conclusion

A new, more efficient formulation for the method of manufaetlisolutions (MMS) has been presented. The
method of manufactured solutions is a widely used meansteféning the order of accuracy of an implementation,
in order to determine whether the algorithm has been cdyreaplemented. The original formulation of the method
of manufactured solutions required converged solutiona saquence of refined grids, which was computationally
expensive to obtain; and for realistic problems, obtairrsgfficiently converged solution may not even be possible.

The new formulation only considers the residual of the ditzed equations and not the converged solution in
order to determine the order of accuracy. Hence, the cortipng cost of the method is significantly reduced.
Furthermore, this new formulation can be applied to indigildcomponents of the flow solver, such as the viscous
terms or the boundary conditions, without reference to therocomponents, so that the order of accuracy of each
piece of a flow solver can be individually analyzed.

This new formulation was demonstrated on three differeabl@ms and was shown to yield the same order of
accuracy as the original formulation. These illustrativelylems included one-dimensional flow through porous me-
dia which is an example of a parabolic partial differentiqliation and was solved using a Galerkin finite element
approach. The second example dealt with the one-dimerisson&enant equations, which are hyperbolic in nature
and was discretized using a finite volume approach. In additt second order results, third and fourth order spatial
accuracy was demonstrated for this problem. The third casét dith the two-dimensional incompressible Euler
equations solved via node-centered finite volume approacimstructured triangulated grids. For each of these cases,
the residual formulation showed the same order of accuratlyeroriginal formulation of the method of manufactured
solutions, and examples of how the residual formulationEansed to study individual components of the flow solver
were provided as well.
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