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The Method of Manufactured Solutions is a code verification method that modifies the governing equations
solved within a code by adding a source term to drive the solution towards a predetermined analytic function.
By solving the modified equations on a sequence of grids and comparing the differences between the converged
solution and manufactured solution, the order of accuracy of the implementation can be determined. The
method of manufactured solutions combines the benefits of comparing with an exact solution without the need
to derive an exact solution to the governing equations. However, in its current form, highly converged solutions
on a sequence of grids are required which can be quite costly and difficult to obtain. In this paper, the method
of manufactured solutions is used in a different fashion that removes the need for converged solutions by
considering only the residual of the discretized governingequations rather than the solution, thus avoiding
the computational cost and difficulties inherent in obtaining highly converged solutions. Furthermore, this
new approach is quite similar to the method for analyzing a discretization method to determine the order
of accuracy of that method via Taylor’s series expansions. This new approach is demonstrated to yield the
same order of accuracy as the original method of manufactured solutions using three different cases - one-
dimensional porous media equation, one-dimensional St. Venant equations and two-dimensional unstructured
Euler simulations.

Nomenclature

p Order of Accuracy
h Typical Step Size
I(h) Error Measure
Q Converged Solution
Qe Exact Solution
Qi Computed Solution on Gridi
χ Computational Domain
t Time
V Volume
R Residual

I. Introduction

When a computational simulation is used to approximate the physics of a particular problem, the computer yields
a set of numbers that represent approximations to physical quantities. The computer, however, does not tell the user
whether the numbers are correct or realistic. How does one determine whether those numbers are consistent with the
governing equations, and how does one determine how accurate those numbers are? These questions are the principle
concerns of verification and validation.
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Two different classes of error exist in a computational simulation - errors associated with modeling the physical
phenomenon with a mathematical expression and errors associated with solving a continuous mathematical expression
on a discrete set of points using a finite precision machine. Code validation addresses the first class of error and
involves comparing computational results with experimental results to determine the usefulness of the computational
tool in predicting the physical phenomenon. Code verification is the process of quantifying the error introduced by
discretizing the continuous governing equations and solving them on finite precision machines.

Code verification is the process of identifying sources of error within a numerical simulation. Typical sources of
error include round-off error resulting from the use of finite precision machines, oscillations in the solution due to
the lack of a strongly converged solution and discretization error associated with the choice of discretization method.
Round-off error for steady-state simulations is probably of little concern due to the self-correcting nature of steady-
state simulations. Oscillations in the solution near convergence are often noticed for complicated geometries with
complicated physics, especially in three-dimensional flowand for turbulent flow, and the error associated with these
oscillations can be estimated by banding the oscillations from above and below. Discretization error is the error that
results from the differences between the discretized equation and the continuous partial differential equation, and for
most simulations, this error is the critical one to analyze.

Code verification is typically accomplished via a grid refinement study where the solution on a sequence of grids
is compared either with a known exact solution or with the solution on a highly resolved grid. As the grid is resolved,
the error between the solution on the current grid and the exact solution should reduce at a rate consistent with the
order of accuracy of the method. By demonstrating that this rate is achieved asymptotically, the code can be deemed
“verified”. However, there are many difficulties with grid refinement studies. First, exact solutions may be difficult to
obtain and may result in closed-form solutions involving infinite series, which are problematic to compute numerically.
But without an exact solution, there is no guarantee that thesolution to which the code converges is the solution to the
governing equations, even if the order of accuracy is demonstrated. For instance, if a multiplicative factor for one of
the terms in the governing equation is omitted in the code, then the solutions may converge well, but they will clearly
converge to the wrong answer.

The Method of Manufactured Solutions (MMS), developed by Steinberg and Roache1,2, is a methodical approach
to determine the order of accuracy of the implementation of amethod to discretize a partial differential equation
(PDE). This approach combines the best features of grid refinement studies and comparisons with exact solutions,
by introducing a source term that drives the solution towards a given analytic function. By comparing the converged
solution on a sequence of successively refined grids with themanufactured exact solution, the order of accuracy of the
solution and hence of the implementation can be determined.Unlike a typical grid refinement study, the solution on
these grids should converge to a known, analytic solution, and unlike comparison with exact solutions, the analytic
solution need not be a solution to the governing equations, so the method of manufactured solutions can be applied to
complicated sets of equations on complicated geometries.

This method was originally proposed for code verification ofstructured flow solvers on structured grids, typically
grids with little geometry complexity, such as squares or cubes. As such, the sequence of grids generated for the
refinement study did not need to be produced by grid doubling.However, for more realistic geometries, Eca3 has
introduced the concept of geometrically similar grids, where the elements in the refined grid union to form each
element in the coarse, so that grid doubling is required. This method of manufactured solutions has recently been
extended to unstructured solvers on structured grids4 and to unstructured solvers on triangular unstructured grids5,6.

In order to avoid the computational cost of a grid refinement study and the need to obtain highly converged
solutions, a new version of the method of manufactured solutions has been derived that directly compares the error in
the implementation of the discretization method. When the order of accuracy of a discretization method is analyzed
algebraically, the error in a discretization method is defined as the difference between the discretization method and
the partial differential equation when acting upon a smoothanalytic function. Typically, the order of accuracy is
found via a Taylor’s Series expansion of the discretized equations about a common point, and the result is compared
with the partial differential equation. However, the orderof accuracy derived from a grid refinement study compares
the differences in the converged solutions, which represents the effects of the discretization method but does not
directly interrogate the discretization method. This new version of the method of manufactured solutions isolates
the discretization error inherent in the discretization method, and hence can calculate the order of accuracy of an
implementation without the need for a converged solution orfor any iterations of the algorithm towards convergence.

This paper first presents the important concepts for grid refinement methods to obtain an estimate of the order of
accuracy, then the original formulation of the method of manufactured solutions is presented, followed by the residual
formulation of the method of manufactured solutions. Afterthe methods are presented, these methods are tested
on three different sets of equations - the 1D porous media equation, the 1D St. Venant equations and the 2D Euler
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equations.

II. Code Verification Methods

To determine the accuracy of a numerical implementation, two methods are predominate, 1) comparison with an
exact solution and 2) use of grid refinement studies. In the first method, a simple geometry with an known, relatively
simple analytic solution is used for comparison with the numerical code. The assumption is that as the typical grid
spacing tends to zero, the results from the numerical code will converge to the exact solution. By comparing the
difference between the exact solution and the numerical solution on two different grids, the order of accuracy can be
obtained. Some quantity of interestI is measured, such as the drag for the geometry. So for the exact solution, the
exact value of the quantityIexact is known and the assumption that for a grid with typical grid spacingh, this quantity
can be expanded via Taylor’s series expansion as

I(h) = Iexact + A1h
1 + A2h

2 + A3h
3 + ... (1)

If the code implementation is second-order accurate,A1 will be zero andA2 will be non-zero, as may be the other
coefficients. However, since only a finite number of simulations will be performed, the Taylor’s series is truncated,
which may result in non-zero entries for each term in the series. As a result, another form of the expansion is often
used, or

I(h) = Iexact + Ahp (2)

whereA andp are unknowns. If the code implementation is second-order accurate, the exponentp will converge to
2.0 as the grid is refined, because the influence of the higher order terms in the expansion will become increasingly
less noticeable.

If an exact solution is used, thenIexact is assumed to be known, then two unknowns exist, which are thecoefficient
A and the exponentp, so the solution on two grids is necessary. For instance, if the exact solution is known and two
grids with typical grid spacingsh1 andh2 are used to generate a numerical value forI(h1) andI(h2), then solving to
removeA from the equation yields

(

h2

h1

)p

=
I(h2) − Iexact

I(h1) − Iexact
(3)

and the order of accuracy is approximately

p =
log

(

I(h2)−Iexact

I(h1)−Iexact

)

log
(

h2

h1

) (4)

If the exact solution is not known, then the solution on threedifferent grids with spacingh1, h2 andh3 are
required, or

I(h1) = Iexact + Ahp
1

I(h2) = Iexact + Ahp
2

I(h3) = Iexact + Ahp
3

(5)

Typically, the spacings are related, in thath2 = rh1 andh3 = rh2 wherer is some refinement ratio. Using a constant
grid refinement ratio ofr, then the order of accuracy is

p =
log

(

I(h3)−I(h2)
I(h2)−I(h1)

)

log(r)
(6)

When using a grid refinement study, the assumption is that thegrids lie within the “asymptotic range”, which means
that the primary source of error in the simulation arises from the leading order error term and that the other sources
of error are insignificant. In reality for complicated two-dimensional and for most three-dimensional simulations, the
size of grid required to be in the “asymptotic region” may be excessively large, so the assumption that the leading
order error term is the dominant error term may not be valid. Thus, more than the minimum number of grids is often
used to determine the order of accuracy. When using 4 or more grids, several different combinations of grids can be
used to determine the order of accuracy and more complicatedformulae, such as those reported by Eca3, can be used,
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which will probably lead to significant differences in the reported order of accuracy. The warning, then, is to be aware
of these limitations and assumptions and to take care when using these methodologies.

Furthermore, the means by which a grid is refined can affect the observed order of convergence. Eca3 used the
term “geometric similarity” to describe the types of grids that he used in his grid refinement study. One of the main
characteristics of geometrically similar grids is that each element in the coarse grid is subdivided into smaller elements
that union to form the coarse element. Hence, the volume of influence is maintained in a consistent manner from one
grid to the next grid, and the faces of the control volume in the coarse grid are exactly replicated in the fine grid.
Geometric similarity is achieved for one-dimensional grids by subdivided each interval into an integer number of sub-
intervals, and it is achieved for two-dimensional triangulated unstructured grids by h-refinement without any quality
improvements.

III. Method of Manufactured Solutions

The method of manufactured solutions modifies the governingequations so as to drive the solution towards a
predetermined “manufactured” solution. The continuous partial differential equation has the form and dependencies
of

L(Q, χ, t) = f(χ, t) (7)

with boundary conditions
B(Q, χ, t) = g(χ, t) (8)

whereQ is converged solution,χ represents the computational domain,f(χ, t) andg(χ, t) are source terms that only
depends on the computational domain and on time, but not on the solutionQ. The implementation of the source terms
can be verified easily by a grid refinement and comparison withthe exact source terms, without solving for the flow
variablesQ.

Each flow variable represented inQ is set to some continuous function such as the exponential orsine or cosine
functions, which will be termedQe(x, y, z). These “manufactured” solutions are plugged into the governing partial
differential equation to generate a new set of source terms,which modify the governing equations to

L(Q, χ, t) = L(Qe, χ, t) (9)

and
B(Q, χ, t) = B(Qe, χ, t) (10)

The geometric source termsf(χ, t) andg(χ, t) cancel out in the process, but as their implementation is easy to verify,
this cancelation is acceptable.

Upon discretization, the right-hand-side can be evaluatedexactly when the methodology and assumptions behind
the discretization method are evaluated. For instance, when the finite volume method is used, the partial differential
equations are integrated over the control volume, and when the finite element method is used, the partial differential
equations multiplied by a weight function are integrated over each element. These integrals can be evaluated exactly
because of the nature of the manufactured solutions, especially if the manufactured solutions are exponentials or
trigonometric functions. Thus, using a symbolic manipulation software package such as Mathematica, these integrals
can be evaluated exactly and implemented without modification into a FORTRAN or C code.

Because of the source terms, the discrete solution vectorQc should converge to the exact solution, assuming a
proper implementation of the discretized governing equations. Thus, the order of accuracy of the implementation can
be verified by comparing the difference between the exact solutionQe and the converged solutionQc via some norm,
such as theL1-norm, or

Error1(Q
e, Qc) =

N
∑

j=1

|Qe
j − Qc

j |Vj (11)

whereN is the number of nodes in the grid,Qe
j represents the exact solution evaluated at the location of nodej and

Vj is the volume associated with nodej. If the order of accuracy matches the theoretical order of accuracy, then the
errors in the implementation are no worse than the errors in the discretization method, and the code can be said to be
“verified”.

The manufactured solution can be any convenient function with the properties that the function is differentiable
enough so that the leading order error terms in the Taylor’s series expansion are non-zero. For instance, for a second-
order partial differential equation, such as the heat equation, and a third-order accurate discretization, then the manu-
factured solution must have at least five continuous derivatives to account for the two spatial derivatives in the PDE and
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the non-zero third-order error term which can be found via three additional derivatives. Typically, exponentials, cosines
and sines are convenient since they are infinitely differentiable, but under some circumstances, the anti-derivativesof
these functions when the PDE is applied to them may not exist.In those cases, high-degree polynomials will suffice.
The choice of manufactured solution does require some effort to avoid singularities such as division by zero or taking
the square root of a negative number in some regions of the domain.

IV. Residual Formulation of the Method of Manufactured Solutions

The original formulation of the method of manufactured solutions requires the calculation of the solutionQi

on a sequence of successively resolved grids, which can be computationally expensive. Fortunately, the required
information is already available, without the need for iterating towards the solution. In particular, by plugging the
discrete values of the exact solution for gridχi into the discretized governing equations,

Ri(Q
e) = Ri(Q

i + Qe − Qi) = Ri(Q
i + ∆Qi)

= Ri(Q
i) +

∂Ri

∂Q
(Qi)

(

∆Qi
)

+ O
(

∆Qi
)2

=
∂Ri

∂Q
(Qi)

(

∆Qi
)

+ O
(

∆Qi
)2

(12)

where∆Qi = Qe − Qi andRi(Q
i) = 0, sinceQi is the converged solution for the equations on gridχi. Thus, the

error represented byRi(Q
e) contains the same error term as the difference between the exact and computed solutions.

If the residual linearly depends on the unknownQ, then Eqn (13) reduces to

Ri(Q
e) =

∂Ri

∂Q
(Qi)∆Qi (13)

where ∂Ri

∂Q (Qi) is a constant matrix dependent only on metric terms, and the order of accuracy of the residual is
clearly the same as the order based on the converged solution. Using this reasoning, if the residual is a polynomial
in Q, as is the case with many sets of governing equations including the Navier-Stokes equations, then the additional
terms represent higher order terms in the expression, and the leading order error term is the same. If the residual
includes ratios of these flow variables or other combinations such as square roots that can generate singularities, then
the manufactured solution must avoid these singularities,in which case the residual can be written as a convergent
Taylor’s series expansion, and the order of accuracy is again determined from the leading term.

Because of the equivalence of the residual form and the original formulation of the method of manufactured so-
lutions, only the residual equations resulting from the discretized governing equations and the source term from the
manufactured solution needs to be evaluated, and it only needs to be evaluated once, which is quite inexpensive in
comparison to the cost of obtaining highly converged solutions on a sequence of successively refined grids. In fact, de-
termining the order of accuracy directly from the residual rather than from the converged solutions mimics the method
for determining the order of accuracy of the stencil via a Taylor’s series expansion. When one determines the order of
accuracy of a stencil, the terms are expanded about a common point in time and space assuming a sufficiently smooth
function. After cancelations, the continuous governing equation is recovered, assuming a consistent discretization,
and the extra terms are the leading order error terms and higher order error terms. This methodology presented herein
works in a similar fashion.

V. 1D Porous Media Equation

The porous media equation governs the flow of water through porous media such as groundwater through an
aquifer. It is governed by Darcy’s law that states that the flow is proportional to the change in the pressure. Perhaps the
simplest example is the flow of water through an aquifer due tothe pumping action at a well. For this case, the flow
is assumed to be radially symmetric about the well of radiusRw and flows through a confined aquifer with the radius
of influenceRo (i.e., the outer boundary). Under these assumptions, the pressure within the aquifer is the piezometric
headh(r, t) and the continuity of mass equation can be reduced to

S

T

∂h

∂t
=

∂2h

∂r2
+

1

r

∂h

∂r
(14)

whereS is the storage coefficient andT is the transmissivity. For steady-state flow, the temporal derivative is zero.
Assuming a drawdown at the well ofHo − Hw, whereHo is the head at the outer boundary andHw is the head at the
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well, then the solution to the governing equations is

h(r) = Ho +
(Hw − Ho)log(r/Ro)

log(Rw/Ro)
(15)

For the numerical discretization, the Galerkin finite element method was used on a one-dimensional uniform grid. The
stencil for nodei is obtained by multiplying the governing equation by the weight functionφi and integrating over the
domain of influence, or

∫ ri+1

ri−1

φi

[

∂2h

∂r2
+

1

r

∂h

∂r

]

dr (16)

Upon discretization and after dividing through by the term generated by the temporal derivative (i.e.,∆ri+1+∆ri

2 ), the
discretization of each term at each interior node was

hrr ≈

(

hi+1 − hi

∆ri+1
−

hi − hi−1

∆ri

)

2

∆ri+1 + ∆ri

hr

r
≈

(

hi+1 − hi

(∆ri+1)2

[

ri+1ln

(

ri+1

ri

)

− ∆ri+1

]

+
hi − hi−1

(∆ri)2

[

∆ri − ri−1ln

(

ri

ri−1

)])

2

∆ri+1 + ∆ri

(17)

wherehrr is the second spatial derivative ofh, ∆ri+1 = ri+1 − ri and∆ri = ri − ri−1.
To determine the order of accuracy of these stencils, these formulae are expanded using Taylor’s series expansions

about a common point, such ashi. The stencil for the term∂2h
∂r2 reduces to

hrr + hrrr
∆ri+1 − ∆ri

3
+ hrrrr

∆r2
i+1 − ∆ri+1∆ri + ∆r2

i

12
+ O(∆r3

i+1, ∆r3
i ) (18)

The stencil for the termhr/r is

hr

r
+

[

hr

3r2
+

hrr

2r

]

(∆ri+1 − ∆ri)+

[

hr

12r2
−

hrr

12r2
+

hrrr

12r

]

(

∆r2
i+1 − ∆ri+1∆ri + ∆r2

i

)

+O(∆r3
i+1, ∆r3

i ) (19)

The term(∆ri+1 − ∆ri) is zero for uniform grids and much smaller than∆r for grids whose spacing grows geomet-
rically, so that the influence of this term is undetectable, making this discretization second-order accurate. In addition,
the third order term in both expansions has a factor of(∆ri+1 − ∆ri), so that the third order error term is zero for
uniform grids.

For this problem, the well had a radius of 0.02 units and the outer boundary was set at 1 units. The piezometric head
at the well was 0, and the head at the outer boundary was 5 units, which allowed for a Dirichlet boundary condition.
Using the exact solution as the target for a traditional gridrefinement study, the error is measured as the difference
between the highly converged computed solution and the exact solution, or

L1
error =

N
∑

i=1

|hi
exact − hi

computed|
ri+1 − ri−1

2
(20)

Using this definition for the error, the order of accuracy canbe verified as second-order, as is shown in Table 1, where
N is the number of intervals. Using equation (4), the order of accuracy based on these errors is shown in the right
column, and asymptotically approaches 2.

N Error Accuracy

100 0.02722986504 NA

200 0.00676605012 2.00880

400 0.00168880297 2.00231

800 0.00042202945 2.00059

1600 0.00010549746 2.00014
Table 1. Error between Computed and Exact Solution.
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Since an analytic solution exists for this set of equations,the choice of function for the method of manufactured
solutions could be that function. But for illustration purposes, the manufactured solution was chosen ash(r) = r10.
The source term for this function, then, is

hrr +
hr

r
= 90r8 +

10r9

r
= 100r8 (21)

Applying the finite element method to this source term, the contribution to the discrete residual is

∫ ri+1

ri−1

φi100r8dr =
90r10

i + 10r10
i+1 − 100ri+1r

9
i

9∆ri+1
+

90r10
i + 10r10

i−1 − 100ri−1r
9
i

9∆ri
(22)

This source term is simple enough to calculate by hand, but for more complicated functions, symbolic manipulation
software such as Mathematica can be easily used to perform this task, and then output the results in FORTRAN or
C format for direct copying into the code. After implementing this source term, the same example was run using
Dirichlet boundary conditions consistent with the manufactured solution. The error based on the residual formulation
of the method of manufactured solutions is shown in Table 2 and is defined as

L1
residualerror =

N
∑

i=1

|Residuali| (23)

Since the residual already includes the area contribution,it is not needed for the error calculation. As can be seen in
Table 2, the order of accuracy from one grid to the next approaches 2 as the grid spacing is halved, which demonstrates
second-order accuracy.

N Residual Error Accuracy

100 0.00064080995 NA

200 0.00016296669 1.9753

400 0.00004109210 1.9876

800 0.00001031714 1.9938

1600 0.00000258484 1.9969
Table 2. Residual Error For Porous Media Equation.

Similarly, the error between the converged solutions and the manufactured solution is shown in Table 3. This error
also demonstrates second-order accuracy. However, due to the conditional stability of this algorithm, the computational
cost of obtaining the converged solutions was quite large, even for this one-dimensional problem; whereas for the
residual formulation, the computational cost was the cost of performing one iteration of the flow solver.

N Variable Error Accuracy

100 0.00009288762 NA

200 0.00002316852 2.00332

400 0.00000578882 2.00082

800 0.00000144699 2.00021

1600 0.00000036173 2.00005
Table 3. Variable Error Using Method of Manufactured Solutions.

Another advantage of the residual form of MMS is the ability to isolate and study each component of the flow
solver. For instance, the order of accuracy for the first termhrr can be studied without the influence of the other
term. Or, if more complicated boundary conditions are imposed, their influence and order of accuracy can be studied
without reference to the interior nodes. In particular, forthe termhrr, the residual form of MMS using the function
h(r) = r10 results in errors that are on the order of machine precision.When investigated further, it was discovered
that for a uniform grid, this solution is an exact solution ofthe resultant MMS equation shown in Eqn (23), or

hi+1 − 2hi + hi−1 = 18r10
i + r10

i+1 + r10
i−1 − 10r9

i (ri+1 + ri−1) (24)
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when hi+1 = r10
i+1, hi = r10

i and hi−1 = r10
i−1. When the second termhr/r was studied, the error using the

residual formulation reduced at a rate consistent with a second-order discretization. When the flow solver was run
with only this term activated, it was discovered that this isolated stencil is unconditionally unstable whether it is an
implicit or explicit discretization, which agrees with thevon Neumann analysis for this stencil. Hence, the method
of manufactured solutions could not be used in the original formulation to determine the order of accuracy of the
implementation ofhr/r, but the residual formulation could be used.

VI. 1D St.Venant Equations

The St. Venant Equations model flow in channels and rivers andrepresent a simplification of the Navier-Stokes
Equations by assuming a hydrostatic pressure distributionin the vertical direction. The flow variables are the depthh
and the discharge ratep, and the coefficients are Manning’s friction coefficientn, gravityg, the bed slopeSo and the
hydraulic radiusRw. The one-dimensional St. Venant Equations can be expressedas

∂h

∂t
+

∂p

∂x
= 0

∂p

∂t
+

∂

∂x

(

p2

h
+

1

2
gh2

)

= gh

(

So −
n2p2

h2R
4/3
w

) (25)

These equations were discretized using the flux difference splitting finite volume method similar to the method used
by Whitfield7 for the 2D Shallow Water Equations. Using a manufactured solution of h(x) = e−x/1500 andp(x) =
ex/1500, where 1500 is the length of the channel, the code was verifiedon a sequence of grids using anL2-norm of the
difference between the computed and exact manufactured solutions, or

E1(Q
e, Qi) =

N
∑

j=0

∆xj

(

|he(xj) − hi(xj)| + |pe(xj) − pi(xj)|
)

(26)

where∆xj is the length of the control volume associated with nodej. The results of this error norm, which is the
result of the original formulation of the method of manufactured solutions is shown in Table 4.

N Variable Error Accuracy Comp. Cost

100 0.042862708 N.A. 5.32

200 0.010705630 2.00135 18.26

400 0.002675181 2.00066 69.24

800 0.000668642 2.00033 235.52

1600 0.000167141 2.00017 910.08

3200 0.000041783 2.00008 1588.71
Table 4. Error based on Original Formulation.

where the third column represents the order of accuracy as determined via Equation (4). As the grid spacing is
successively halved, the order of accuracy of this implementation approaches second order. In the fourth column, the
computational cost (in seconds) of obtaining a highly converged solution is provided and shows that the cost for the
largest grid is almost half an hour.

Using the residual form of the method of manufactured solutions, the error is theL1-norm of the residual at each
grid location for the exact solution, or

E2(Q
e) =

N
∑

j=0

|R1(Q
e)j | + |R2(Q

e)j | (27)

whereR1 andR2 are the results for the discretization of the first and secondequation in the St. Venant Equations.
These errors are tabulated in Table 5, and again demonstratesecond-order accuracy. From this example, the order
of accuracy is the same for the residual form and the originalformulation of the method of manufactured solutions,
indicating that the order of accuracy calculated from the residual form of the method of manufactured solutions is as
useful as the order of accuracy calculated from the originalformulation.
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N Residual Error Accuracy Comp. Cost

100 0.000729183538 N.A. 0.00363

200 0.000188734839 1.94992 0.00723

400 0.000048006195 1.97507 0.01445

800 0.000012105478 1.98756 0.02882

1600 0.000003039431 1.99379 0.05775

3200 0.000000761495 1.99689 0.11564
Table 5. Error based on Residual Form.

The fourth column of Table 5 shows the computational cost (inseconds) of the residual formulation. These
costs are orders of magnitude less than the cost of the original formulation, due to the fact that the residual must be
calculated only once for this method, instead of repeatedlyas the solver iterates to obtain the converged solution. In
addition, the Jacobian calculation is not needed, and the solution to the matrix equation is not required, both of which
reduce the computational cost. This computational savingswill be even more pronounced when applied to two- and
three-dimensional simulations.

N Variable Error Accuracy

100 0.000142583963 N.A.

200 0.000017693074 3.01055

400 0.000002212223 2.99961

800 0.000000276456 3.00038

1600 0.000000034550 3.00029

3200 0.000000004318 3.00025
Table 6. Third-Order Error based on Original Formulation.

As further demonstration, if the slopeSo and the friction coefficientn are set to 0, then third and fourth order
compact stencils are available. Using the MUSCL-scheme7, a third order stencil can be obtained. The source terms
must be eliminated since their discretization is only second-order accurate and would dominate the higher-order ef-
fects. TheL1-error based on the difference between the exact and computed solutions is shown in Table 6, and the
error based on the residuals is shown in Table 7. Again, both methods show a third-order convergence rate.

N Residual Error Accuracy

100 0.0000035165437 N.A.

200 0.0000004362233 3.01102

400 0.0000000543199 3.00551

800 0.0000000067770 3.00276

1600 0.0000000008463 3.00138

3200 0.0000000001058 3.00050
Table 7. Third-Order Error based on Residual Form.

A fourth-order stencil can be obtained by using two values tothe left and to the right of each interface. However,
this stencil is not stable, so that converged solutions could not be compared with the exact solution. However, the order
of accuracy of the stencil can be determined via the residualform of MMS, as is shown in Table 8. As these results
show, the fourth order accurate scheme is so accurate that the influence of round-off error is seen starting at the grid
with 800 nodes, and this influence dominates for the two most resolved grids. However, for the first three grids, the
order of accuracy is clearly fourth order.
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N Residual Error Accuracy

100 0.00000000459628 N.A.

200 0.00000000028494 4.0117

400 0.00000000001774 4.0056

800 0.00000000000201 3.1417

1600 0.00000000000326 N.A.

3200 0.00000000000637 N.A.
Table 8. Fourth-Order Error based on Residual Form.

VII. 2D Unstructured Euler Equations

The final example deals with an two-dimensional unstructured finite volume flow solver of the steady-state incom-
pressible Euler equations, which are show below

∂u

∂x
+

∂v

∂y
= 0

∂(u2 + P )

∂x
+

∂uv

∂y
= 0

∂uv

∂x
+

∂(v2 + P )

∂y
= 0

(28)

whereu andv are the velocities in thex andy directions andP is the dynamic pressure. The manufactured solutions
were chosen to be exponentials as is shown below

P e = e2x+2y

ue = ex+y

ve = ex+y

(29)

The computational domain was an equilateral triangle subdivided equally into equilateral sub-triangles, as is shown in
Figure 1. In addition, Murali5,6 applied this approach to a triangulated square grid and to a grid about a NACA0012
airfoil. The sequence of grids was obtained by using h-refinement where each edge was split in the middle and each
triangle was replaced by 4 smaller triangles.

Figure 1. Equilateral Triangle.

The number of nodes and the number of triangles for each grid is shown in Table 9, ranging from excessively coarse
to highly refined.
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Grid Level Nodes Triangles

1 15 16

2 45 64

3 153 256

4 561 1024

5 2145 4096

6 8385 16384

7 33153 65536
Table 9. Nodes and Triangles in Equilateral Triangles.

Both inviscid and viscous simulations were studied using both the original and residual forms of the method of man-
ufactured solutions. The flux differencing formulation of the finite volume method was used for these discretizations,
and are further described by Hyams8,9.

The results for the inviscid case are shown in Tables 10, 11, and 12 using anL1 norm for the difference between
the computed solutions and the exact solution for each variable. The order of accuracy is clearly converging towards
2, even though for the coarser grids the observed order of accuracy is different from 2.

Triangles PressureP Error Accuracy

16 0.0000105048 N.A.

64 0.00000247905 2.083

256 0.00000627157 1.983

1024 0.00000159472 1.975

4096 0.000000402268 1.987

16384 0.000000101005 1.994

65536 0.0000000253041 1.997
Table 10. Pressure Error for Euler Equations.

Triangles X-Velocity u Error Accuracy

16 0.00000174646 N.A.

64 0.000000615283 1.505

256 0.000000202460 1.604

1024 0.0000000649553 1.640

4096 0.0000000195274 1.734

16384 0.00000000540187 1.854

65536 0.00000000142033 1.927
Table 11. X-Velocity Error for Euler Equations.

Triangles Y-Velocity v Error Accuracy

16 0.00000391432 N.A.

64 0.000000678723 2.528

256 0.000000133879 2.342

1024 0.0000000389832 1.780

4096 0.0000000117515 1.730

16384 0.00000000331684 1.825

65536 0.000000000883976 1.908
Table 12. Y-Velocity Error for Euler Equations.

The error associated with each equation in the set of governing equations is shown in Tables 13, 14 and 15. The
order of accuracy seen from the residual equations matches the order of accuracy from the converged solutions, and it
is better behaved in that the error ratio monotonically converges towards the ideal value and the influence of the higher
order error terms can be clearly seen.
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Triangles Continuity Residual Error Accuracy

16 0.0009337660 N.A.

64 0.0003753253 1.315

256 0.0001136083 1.724

1024 0.00003101255 1.873

4096 0.000008088478 1.939

16384 0.000002064616 1.970

65536 0.0000005214924 1.985
Table 13. Continuity Residual Error for Euler Equations.

Triangles X-Momentum Residual Error Accuracy

16 0.0002495181 N.A.

64 0.00008251329 1.596

256 0.00002329190 1.825

1024 0.000006166476 1.917

4096 0.000001585209 1.960

16384 0.0000004017942 1.980

65536 0.0000001011372 1.990
Table 14. X-Momentum Residual Error for Euler Equations.

Triangles Y-Momentum Residual Error Accuracy

16 0.0003263460 N.A.

64 0.0001035595 1.657

256 0.00002876701 1.848

1024 0.000007564698 1.927

4096 0.000001939237 1.963

16384 0.0000004909055 1.982

65536 0.0000001234934 1.991
Table 15. Y-Momentum Residual Error for Euler Equations.

VIII. Conclusion

A new, more efficient formulation for the method of manufactured solutions (MMS) has been presented. The
method of manufactured solutions is a widely used means of determining the order of accuracy of an implementation,
in order to determine whether the algorithm has been correctly implemented. The original formulation of the method
of manufactured solutions required converged solutions ona sequence of refined grids, which was computationally
expensive to obtain; and for realistic problems, obtaininga sufficiently converged solution may not even be possible.

The new formulation only considers the residual of the discretized equations and not the converged solution in
order to determine the order of accuracy. Hence, the computational cost of the method is significantly reduced.
Furthermore, this new formulation can be applied to individual components of the flow solver, such as the viscous
terms or the boundary conditions, without reference to the other components, so that the order of accuracy of each
piece of a flow solver can be individually analyzed.

This new formulation was demonstrated on three different problems and was shown to yield the same order of
accuracy as the original formulation. These illustrative problems included one-dimensional flow through porous me-
dia which is an example of a parabolic partial differential equation and was solved using a Galerkin finite element
approach. The second example dealt with the one-dimensional St. Venant equations, which are hyperbolic in nature
and was discretized using a finite volume approach. In addition to second order results, third and fourth order spatial
accuracy was demonstrated for this problem. The third case dealt with the two-dimensional incompressible Euler
equations solved via node-centered finite volume approach on unstructured triangulated grids. For each of these cases,
the residual formulation showed the same order of accuracy as the original formulation of the method of manufactured
solutions, and examples of how the residual formulation canbe used to study individual components of the flow solver
were provided as well.
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