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Abstract

Discrete sensitivity analysis is a method that efficiently estimates the derivatives of
a numerically approximated objective function with respect to a set of parameters.
This method can be coupled with an optimization algorithm to locate the optimal set
of parameters for the objective function. Many problems within water resource ap-
plications are studied via numerical simulations and can be re-formulated into func-
tion optimization problems. Two examples, which are presented in this paper, are
the design of open-channels using a two-dimensional Petrov-Galerkin finite element
code and the identification of parameters for a time-dependent, two-dimensional
groundwater code. Once these problems are formulated into optimization problems,
the steady and unsteady adjoint variable formulation of discrete sensitivity analysis
are used to estimate the gradient, and the BFGS optimization algorithm is used to
update the parameters.

1 Introduction

A wide variety of engineering problems within water resource applications can be formulated as
a function minimization problem, subject to constraints. For instance, the design of storm-water
management systems requires that each open-channel in the system provide for a large discharge
of water without causing floods. Each transition region could be optimized by changing the shape
of the open channel to minimize the average depth of water in channel. Another example is in
parameter estimation within groundwater aquifers. In this case, the optimal set of parameter could
be estimated by minimizing the difference between the computed pressures within the aquifer and
the observed pressures, as water is being pumped out of the aquifer or into the aquifer. By working
alongside engineers in the field, the goals of a particular engineering project and the restrictions
can be ascertained, and appropriate objective and constraint functions, as well design parameters,
can be determined.

Once the optimization problem has been defined, numerical methods can be employed to evaluate a
particular design (i.e., evaluate the objective function), to determine the sensitivities of the design
with regards to the various parameters (i.e., estimate the gradient of the objective function) and to
modify the design based on the sensitivities (i.e., update the design parameters). With the develop-
ment of greater computing power and high-fidelity computational fluid dynamics, better numerical
methods for evaluating the flow through a particular design are continuing to be developed. Using
the appropriate numerical tool, the merits of a particular design can be evaluated.
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To estimate the sensitivities of the design with respect to the parameters, the researcher can use
a variety of numerical methods, including finite differences, automatic differentiation, the complex
Taylor’s series expansion method and discrete or continuous sensitivity analysis. For high-fidelity,
implicit flow solvers, discrete sensitivity analysis provides accurate derivative information efficiently.
Both the steady-state and unsteady adjoint variable formulations of discrete sensitivity analysis will
be presented herein.

Once the design has been evaluated and the sensitivities have been determined, the design param-
eters should be updated. The method of steepest descent moves the parameters in the gradient
direction, which is easy to implement, but often performs poorly. Quasi-Newton methods, such
as the BFGS secant update method, use only gradient information to build an approximation to
the Hessian matrix, which provides for much better convergence rates. For direct methods, the
Gauss-Newton method also provides superlinear convergence rates and may be more successful
that Quasi-Newton methods.

In the next section, the author will give a brief background to the use of sensitivity analysis within
gradient-based numerical design optimization. In the remainder of this paper, the author will
present the steady-state formulations of discrete sensitivity analysis and apply these techniques to
a two-dimensional, finite element, shallow water solver for flow through an open-channel. Then
the author will describe the unsteady, adjoint formulation and apply the method to groundwater
parameter estimation.

2 Background

Both discrete and continuous sensitivity analysis have been used to convert CFD codes into gradient
estimation codes in a variety of fields, including aerospace simulations and water resources. Within
the aerospace field, Jameson and Reuther [1,2] were some of the early advocates of continuous
sensitivity analysis, and Shubin and Frank [4], Taylor and Hou [5] and Baysal and Eleshaky [6] were
some of the first researchers with discrete sensitivity analysis. Soemarwoto [3] gives an excellent
analysis of continuous sensitivity analysis which will not be repeated here.

With regard to open-channel flow and river analysis problems, Piasecki and Katopodes [7] used
continuous sensitivity analysis to determine the sensitivities of contaminant concentrations with
respect to times and rates of contaminant releases from industrial facilities. Khatibi, etal [8], used
continuous sensitivity analysis to estimate friction coefficients for the one-dimensional St. Venant
equations, and Atanov, etal [9], used the continuous approach to determine the temporal controls
for the upstream gate on a channel. Burg, etal [10], have used discrete sensitivity analysis for a
two-dimensional code to design open-channels that produce minimal downstream disturbances.

For groundwater modeling, Townley and Wilson [11] developed the time-dependent discrete sensi-
tivity equations, which will be presented again in this paper, for use within groundwater analysis.
This work was published in 1985 and represents a significant contribution that may have been over-
looked by other researchers. Due to the difficulties inherent in groundwater modeling, including



the simulation of the physical effects, such as leaky aquifers and aquifer recharge effects, and the
determination of severely localized groundwater parameters, application of continuous and discrete
sensitivity analysis to groundwater modeling is an underdeveloped field of research.

3 Steady Discrete Sensitivity Analysis

Using an implicit solution algorithm, such as a finite element or finite volume method, marching
in time towards the steady-state solution, the flow variables at time level n are updated based on
the solution of the following equation
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where R(Q,X(ﬁ),ﬁ, t) is the residual vector of the time-dependent equations, @ is a vector of
flow variables, x is a vector of nodal locations within the computational domain, g8 is a vector of
design parameters that can control the shape of the design or the flow parameters. The matrix

[g—g] is either the exact Jacobian matrix of the residual with respect to the flow variables, or it is

an approximation to this matrix. After solving this equation, the flow variables are updated via
QM = QMM + AQ™™, until [AQ™™| < tolerance, at which point Q7! = Q™™ F1,

Once they are determined, the steady-state flow variables () are dependent on the grid x and the
design parameters (3, and the residual can be expressed as

R(Q(x(H), B x(B), f) = 0 (2)

Suppressing the dependence on ¥, since the grid can be determined from the design parameters,
the residual can be expressed as
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The objective function F(Q(ﬁ), X, ﬁ) is typically an analytic function of the flow variables ), the
grid x and the design parameters 8. The total variation of F' with respect to the design parameter
/Bk is
dF  0F 0 oF 0 oF
— = __Q + __X + — (4)
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The vectors gg, ‘3—1; and %’; can be readily determined from the analytic expression for F. The
vector af?Tx can be obtained by perturbing the design parameters, regenerating the grids and cal-
culating the change in the nodal locations. The vector BaTQ can also be obtained by perturbing
the design parameters and calculating the flow through the new design, but as this method would
require several additional steady-state simulations, it could be excessively expensive.



The total variation of the residual with respect to any variable is zero, because it is an implicitly
defined function. Thus,

ia. = oa) a5, * (5] 5. + 95,
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This equation can be rewritten as
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The matrix [g—g] is already available within an implicit code. The vector (‘;T}i can be obtained
Q fixed

with relative efficiency by finite differences. Thus, we have an equation for the troublesome vector
9Q
OB *

The adjoint variable formulation multiplies equation (6) by an adjoint vector A and adds the result
to equation (4), which yields
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By choosing A such that

oF 7 [OR
—+X |=—=|=0 8
oo+ 5 ®)
the need to calculate the vector g—ﬂ% is removed. Thus, the adjoint variable equation is
T
F
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This equation is not dependent on the design parameter [, but does depend on the objective
function F. Thus, the adjoint variable equation must be solved once for each objective function,
without regard to the number of design parameters.

The direct approach solves equation (6) directly for g—gﬂ, or

50l 35 =~

(10)

a—ﬁk a dpB Q fixed

This equation depends on the design parameter and must be solved once for each design parameter,
regardless of the number of objective functions. Thus, when the number of design parameters
exceeds the number of objective and constraint functions, then the adjoint variable formulation is
more computational efficient.



4 Steady State Example

For an example using a steady-state code to evaluate a design and to estimate the sensitivities of
the design, a two-dimensional, Petrov-Galerkin, finite element solver of the shallow water equations
for flow through open-channels is used. The shallow water equations are reliable when the vertical
velocities in the flow are negligible. For slopes that are geometrically mild, albeit hydraulically
steep, such as in concrete-lined open channels, this restriction is not violated as long as there is
not a hydraulic jump in the flow. For more details about the flow solver HIVEL2D, the interested
reader is referred to the work of Berger and Stockstill [12,13], and for information about the shallow
water equations, the reader is referred to the work of Chaudhry [14].

The design problem is to identify the optimal slope of the bed across the channel before, through
and after a circular channel, so as to maintain a constant surface elevation. The channel discharge
rate is 43.794m3 /sec, the slope in the direction of flow is 0.012, and the Froude number is 2.387.
The channel makes a 90° turn to the right. The objective function is
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where hg,e is the average depth over the domain of the objective function and h; ; is the depth at
each node within the domain. There were 50 design parameters that were the control points for a
B-Spline curve that determined the slope across the channel.

The adjoint variable formulation of discrete sensitivity analysis was used to estimate the sensitivi-
ties. The resulting derivatives for several of the design variables are compared with the numerically
exact derivatives as generated via the complex Taylor’s series expansion method [15,16] and are
presented in Table 1. From these derivatives, one can assume that the derivatives are accurate to
between 6 and 8 significant digits. By obtaining such high level of agreement, the researcher can
be confident that the majority of the implementation errors have been eliminated and that the
derivatives will be similarly accurate throughout the optimization process.

‘ Design Variable ‘ Discrete Sensitivity Analysis ‘ Numerically Exact Derivative ‘

1 19.964851067446 19.964852378709
2 25.108134826382 25.108134714268
3 19.358701999683 19.358691597705
10 -12.677576340546 -12.677577631453
18 -32.637833170140 -32.637829687631
25 16.151752162457 16.151750639481
33 -18.134686276300 -18.134684699045
40 -5.0942054245774 -5.0942074466819
47 -5.3103160489289 -5.3103194084512
50 0.37009624729716 0.37009561184092

Table 1. Comparison of Sensitivities for Circular Channel Bend.

The computational cost of estimating the sensitivities via the adjoint variable formulation for the
initial iteration, which includes the steady-state simulation, is 5240.72 seconds, whereas the cost for




generating the numerically exact derivatives was 110,138.625 seconds. Thus, the adjoint variable
formulation was significantly more efficient, requiring only 4.75% of the computational cost of the
numerically exact method.

The BFGS Optimization algorithm [17] was used to update the design parameters. After 9 itera-
tions, the function value has decreased by 99.84%. The convergence history is shown in Figure 1.
The flow field for the initial design, where the slope across the channel is zero, and for the final
design are given in Figures 2 and 3.
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Figure 1. Convergence History.
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Figure 2. Flow Field for Initial Design.
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Figure 3. Flow Field for Final Design.

In Figure 2, the flow field for initial design have several waves that bounce back and forth across the
bend and continue to exert a significant influence far downstream of the bend. Once the channel
bend begins, the flow on the inner wall drops down to half the original water level, while the flow
on the outer wall increases by 50%, which could result in the water overtopping the walls and cause
flooding. For the converged design, the water levels are not perfectly constant, but rather than
fluctuating at almost 50% of the initial depths, it stays within a band of about 4%, greatly reducing
the dangers of flooding.

5 Unsteady Discrete Sensitivity Analysis

For unsteady problems, the objective function is evaluated at several time levels, so it can be
expressed as

N
ﬁzz F(@"(B), x(8), ) (12)

where the time levels are indicated by the index n. At each time level, the temporal residual is
driven to zero, so that the flow variables at time level n are determined by solving

R (Q",Q" ', x,B) =0 (13)

where Q" is the vector of unknowns and Q™! is the vector of flow variables at the previous time
level, which is already known. If the flow variables at other time levels are necessary, then the
equation can be accommodated for them.



The total variation of the objective function with respect to a design parameter is

dF L [ 0fn 0Q™ | 0fn OX 8fn)
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At time level n, the derivative of the residual vector is
_dR _ OR™0Q" OR™ 0Q™ ! OR"™ 0x OR" (15)
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For each time level, the derivative of the residual vector is multiplied by the adjoint vector A, and
added to the derivative of the function to get
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By regrouping the terms %Q%, the equation can be rewritten as
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Thus, by solving the following equations, the adjoint vectors A, can be determined, and the need
to estimate the vectors % is removed.
= 1
3 QN + AN a0 =0 (18)
and
Ofn T OR" 7 ORM!
An = 1
8Qn + An oQn + +1 aQn+1 0 (19)
Rewriting them, we get
oRN T ofn T
S AN = _L]]VV (20)
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From these equations, it is clear that the adjoint vectors must be determined by going backwards
in time. The first adjoint vector to be determined is at time level N and each further adjoint vector



is determined by using the known adjoint vector at the next time level. For the initial time level,
the dependence of the flow variables QQ° on the design parameter §; should be explicitly known and

the term A\ gg(l, % can be determined once A; is calculated. In many cases, % will be zero.

Once the adjoint vectors are determined, the sensitivities can be determined by calculating %% for
each time level and each design variable.

Because a finite element formulation is used to integrate the governing equations, second order
accuracy can be achieved for both the residual vector R and the Jacobian matrix g—g, so that
these two components of the adjoint equations are consisted with each other. If approximations
are used within the Jacobian matrix, then additional errors will be introduced into the sensitivities
generated by the adjoint variable formulation. By using a more accurate Jacobian, as generated via
finite differences or the complex Taylor’s series expansion method [18], these errors can be reduced

significantly.

6 Unsteady Example

To demonstrate the unsteady adjoint variable formulation of discrete sensitivity, this method was
applied to a time-dependent, unstructured code that solves the two-dimensional porous media
equation for confined, heterogeneous aquifers and allows multiple, variable pumping rate wells.
The porous media equation can be expressed as

S% = % (T%) + gy (Tg—Z) + Pumping Terms (22)
where h is the hydraulic head within the aquifer, S is the storage coefficient and T is the transmis-
sivity, both of which can vary in space. The Galerkin finite element method is used to integrate
these equations over an unstructured grid that has a refined grid near the wells and a coarse grid
far from the wells. The code was verified against analytic solutions of the steady-state equations
and against the Theis solution for unsteady isotropic flow.

For the hydraulic engineer who is attempting to understand the structure of the aquifer, some of the
key pieces of information to this structure are the pumping rates and the drawdown curves at each
pumping well and the drawdown curves at each observation well. An optimization problem can be
developed for solving for the storage coefficient and transmissivity throughout the computational
domain by minimizing the objective function

F(T,S) = % (% (impasured — by 4(S, T))Q) (23)

i=1 \j=1

where i is the index for the time level, j is the index for the wells, A"¢3U®d are the measured or

target values, and h; ;(S,T) are the computed values for a specified set of storage coefficients and
transmissivities.

To reduce the size of the search space, a parameter grid with substantially fewer nodes was used
to define the values of S and T throughout the domain and the nodal values for the computational



domain were determined via linear interpolation from these values. The target depths were de-
termined by specifying a set of storage coeflicients and transmissivities and then calculating and
storing the depths generated by these values. For the target depths, the storage coefficient varied
from 1075 and 1072, while the transmissivities varied from 1 to 1000cm?/sec, which are typical
values for the Gordo aquifer of Alabama and Mississippi. Rather than using these values, the
parameters in the optimization problem were the logl0 of these values.
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Figure 4. Unstructured Grid for Groundwater Modeling

The unsteady, optimization problem was tested on a computational grid consisting of 624 nodes
and 1226 elements and had 4 pumping wells and 4 observation sights. This grid is given in Figure
4. Three different parameter grids were used to define the storage coefficient and transmissivity
and consisted of 7 nodes, 13 nodes and 19 nodes. Two of these grids are shown in Figure 5.

One Interior Node Seven Interior Nodes

Figure 5. Parameter Grids of 7 and 13 Nodes.

The adjoint variable formulation was compared with the finite difference method for estimating
gradients. The derivatives produced by both methods were in close agreement with each other as
shown in Table 2. The results in Table 2 are for a parameter grid with 7 nodes, which is overly
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coarse. The first 7 parameter were the storage coefficients, and the final 7 parameters were the
transmissivities. The adjoint variable formulation produces derivatives which are nearly identical
to the more reliable finite difference derivatives, agreeing to approximately 6 significant digits.

‘ Parameter ‘ Adjoint Variable Formulation ‘ Central Differences ‘

1 -45925.025311358 -45924.992299115
2 -2287.0311627811 -2287.0295601024
3 -2660.9661401576 -2660.9633867338
4 -4127.9056919807 -4127.9018274508
5 -845.35360119004 -845.35319110728
6 -1832.6297783025 -1832.6283046918
7 -2975.3520004486 -2975.3513699688
8 -319348.54408843 -319348.57729211
9 -14375.214820738 -14375.216415647
10 -16081.800417180 -16081.803123961
11 -33795.079660431 -33795.083613950
12 -3385.7800768384 -3385.7803835417
13 -11656.581872462 -11656.583317381
14 -22342.723496048 -22342.724091141

Table 2. Comparison of Derivative Estimation Methods for 7 Node Grid.

The advantage of using the adjoint variable formulation, which is more difficult to implement than
the finite difference approach, is the computational savings. In Table 3, the computational cost
of estimating these sensitivities via the adjoint approach and the finite difference approach are

presented for the 7, 13 and 19 node parameter grids.

‘ Parameter Grid ‘ Adjoint Variable Cost ‘ Finite Difference Cost ‘ Savings

7 Nodes 76.48 322.10 76.25 %
13 Nodes 117.43 600.21 80.44 %
19 Nodes 172.18 877.85 80.39 %
Comp. Grid 308.69 28830.4 1.071 %

Table 3. Comparison of Computational Costs of Estimating the Derivatives.

In order to demonstrate that this methodology actuals drives the parameters to the target values,
the parameters are updated through several iterations via the inverse BFGS method. The opti-
mization histories are given in Figure 6. The 7-node parameter grid is driven to machine zero in 65
iterations, when it achieves a function value of almost 1072°. For the more complicated parameter
grids, the optimal solution requires many more iterations.
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Figure 6. Optimization History for Groundwater Parameter Identification Problem.

Finally, the computational grid was used as the parameter grid, so that the value of the parameters
at each node could be determined independently. The code was modified to take advantage of this
structure, because only the elements associated with a particular node are directly dependent on the
values of the parameters. As a result of this observation, the cost of evaluating the residual vector
for the adjoint variable formulation greatly decreases. Once these modifications were made, the cost
of evaluating a derivative via the adjoint variable formulation was less than 0.5 seconds, whereas
for the previous problems, this cost was approximately 3.3 seconds. The derivatives generated
in this fashion agreed with the finite difference derivatives to the same level of accuracy, and the
optimization history is given in Figure 5. The objective function was not driven was reduced only
8 orders of magnitude after 500 iterations, as can be expected from the performance of the 19 node
parameter grid; however, these initial results are encouraging. Better optimization algorithms are
needed to update these design parameters more effectively.

7 Conclusions

In this paper, the adjoint variable formulation of discrete sensitivity analysis for both steady and
unsteady problems has been presented. In this method, the adjoint variable is calculated through
a tedious process, but once it has been determined, the cost of calculating the derivative of the
objective function with respect to any parameter is quite small. For the problems presented herein,
great computational savings is demonstrated for a steady-state design problem with 50 design
parameters and an unsteady parameter identification problem with 624 parameters.

The steady-state problem dealt with the two-dimensional shallow water equations that were solved
using a Petrov-Galerkin finite element code called HIVEL2D. The specific problem was to determine
the optimal bed slope across a channel for a 90° bend. Using the adjoint variable formulation
to estimate the gradient in conjunction with the BFGS optimization algorithm, the optimal set
of design parameters were found in 5 iterations. The derivatives compared well with the finite
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difference derivatives, agreeing to approximately 6 significant digits, whereas the computational
cost of generating these 50 derivatives was only 4.75% the cost of using the complex Taylor’s series
expansion method.

For the unsteady problem, an unstructured, Galerkin finite element method was applied to the two-
dimensional porous media equation to simulate flow in confined aquifers, with variable pumping
rate wells and heterogeneous aquifer properties. Using the pumping rates and drawdown curves, an
objective function that measured the difference between the observed and the computed drawdown
curves was used. Initially, coarse parameter grids consisting of 7, 13, and 19 nodes were used
to approximate the structure of the aquifer properties. In the last example, the value of these
properties were determined for each node in the computational domain, which consisted of 624
nodes. The adjoint variable formulation was used to estimate these derivatives, which were in close
agreement with the finite difference results. The inverse BFGS method was used to update these
parameters, and the function value was decreased by 6 orders of magnitude.

As can be seen by these examples, the adjoint variable formulation of discrete sensitivity analysis
generates derivatives that are accurate to approximately 6 significant digits and yet the computa-
tional cost is quite small for problems with large numbers of parameters. This gradient estimation
method can be combined with the BFGS method to update the parameter values quite effectively,
although as the number of design parameters grows, the performance of this algorithm is decreased.
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