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ABSTRACT ships and submarines is also of importance. Surface ves-
, . . .. sels under investigation by ship designers attempt to miti-
Nonlmear free surface simulations around reall|st|c gﬁéte the negative influences of the free surface interaction
ometries, such as the DTMB Model 5415 Series hully, cayitation, power requirements and wave signature and
are a necessary step to achieve the goal of simulation,gf ¢ 1o use the free surface to improve the performance
maneuvering surface vessels. As part of this effort, g oiher ways. Because of the novelty of many of these
searchers in the Computational Simulation and DesigRgigns which often are not direct extensions of current
Center at Mississippi State University have developgdgigns, extensive sets of experimental data may not yet
ar;d parallelized a three-dimensional unstructured cofgis and designers are more apt to rely on data from nu-
U°NCLE, Wh'_Ch solves the |ngompre§5|ble ReynOId?ﬁerical simulations. Furthermore, the effects on the ship’
averaged Navier-Stokes equations using a node-basgftormance caused by maneuvering through a change in
flux differencing finite volume method with Roe-averagegection, or through various sea states, especially in re-
variables. The simulations produced by this code regl s 1 sea-keeping and cavitation in littoral water are of

istically capture turbulent flow and vortices arising frorﬁ‘nportance in the designs and can not be readily tested by
bulbous bows and tips of propulsors and rudders and (@{beriment.

model the rotation of the propulsors accurately. Because A long-term goal of the research into numerical

the code uses unstructured grids, the code is applicablgjif | ations is to develop the ability to study the perfor-

a wide range of geometries, including those with shaftgynce of a full ship design, including the interactions of
and struts, and can solve the flow through small 9aps SygB arious appendages, sonar domes, rudders, shafts and
as those between the rudder and the boot. Current §gs, 150rs, as the ship maneuvers in response to changes
search efforts include the addition of nonlinear free syf; o settings of the rudders and propulsors. To accom-
face'capabllltles .to this che. A .nonllnear free SUffaC%ﬁsh this goal, efficient and accurate free surface simula-
obtained by solving the kinematic free surface boundggyg are needed. Other necessary components to achieve
cqnd!tlon, imposing the resulting hydros?a‘uc pressuse dipjq goal include capabilities to monitor the onset of incip
tribution onto the boundary for the Navier-Stokes SOlv?ént cavitation, to perform simulation of several vessels i

and moving the grid to match the free surface while Copsqjon relative to one another and to adapt the grid to cap-
forming to any geometry that intersects the free surfaggq \ortices in the water.

The current free surface implementation is loosely cou- Currently, the implicit unstructured code being
pled with the Nav?er—Stokes solver and makes the ass“rBBVeloped by researchers in the Computational Simu-
tion that the flow is steady-state. lation and Design Center at Mississippi State Univer-
INTRODUCTION sity solves thg three_—dimensional, incompregsible Ngvier.

Stokes equations, via an edge-based, flux-differencing fi-
Modeling the free surface generated by surface ships auit@ volume method with Roe-averaged variables. Hyams
by submerged vessels near the water surface is impor{@e00a, 2000b) successfully parallelized the code and has
for proper understanding of the flow around these vegsorted the code to a wide variety of high-performance ma-
sels. In particular, the free surface changes the resistagigines. The unstructured grid generator (Marcum, 1998)
of the vessels through the water by changing the préss the capability of building highly stretched high-agpec
sure distribution and the wetted surface area. The fregio grids near viscous surfaces, which include higher or-
surface affects the location and magnitude of the vorticger elements such as pyramids and prisms. Other areas of
that originate from various locations, including the bowode development include realistic rudder and propulsor-
appendages and propulsors, which can greatly affect théuced motion and full-scale Reynolds number simula-
performance of the propulsors. The wave signaturestiaf.



At each time step, the nonlinear free surface ahodeled under these assumptions.

gorithm solves the kinematic free surface equation In the following section, the free surface algo-
rithm is presented, which includes the method for solving
6_Y+(u -V,) Y _ (w—=V,)+(w—=V,) oy =0 (1) the kinematic free surface equation, the imposition of the
ot Oz Y z hydrostatic pressure on the Navier-Stokes equations and

whereY = Y(z,z,1) is the free surface defined as (Lpe grid movement algorithm. Then, the results for the
single-valued function over thez plane, (u,v,w) are DTMB Model 5415 series simulations are presented.

the velocity components in the coordinate directions aRghy/|ER-STOKES SOLUTION ALGORITHM
(Vz,Vy, V) are the grid velocities. A flow-through bound-

ary condition for the free surface based on characteristigree different sets of equations are solved in the process
variable boundary conditions is used, with the pressure@hnsimulating the flow around surface vessels and sub-
the free surface set tB = FLTZ whereP is the pressure merged vessels near the water surface. The unsteady in-
andFr is the Froude number. After several time steps, t6@mpressible Reynolds-averaged Navier-Stokes equations
grid is moved to match the free surface while conformirghich are presented here in Cartesian coordinates and in
to the geometry, using a three dimensional extensionGsmservative form, are solved to determine the velocity
Farhat's torsional spring method (Farhat, 1998). This g@dd pressure within the computational domain. Either the
movement algorithm is quite robust, allowing for modeBpalart-Allmaras or thg — w turbulence model is used
ate to extreme distortions as required by the free surfd@esSimulate the turbulent viscosity primarily within the
simulations. As the solution converges, the flow along theundary layer, and the kinematic free surface equation
free surface becomes tangent to the free surface, andiggolved to advance the free surface in time.
nonlinear free surface solution is obtained.

Much of this work is an extrapolation of the freeGOVER’\II NG EQUATIONS
surface algorithm used within the three-dimensional stru&ssuming that gravity acts in the y-direction (i.e., the-ver
tured code UNCLE also developed at Mississippi Staiieal direction), the incompressible Navier-Stokes equa-
University. Beddhu (1994)developed the structured fréens can be expressed in dimensional form, denoted with
surface solver, using a modified artificial compressibilisuperscript, as
formulation. This algorithm was applied to steady and

unsteady flow around the Wigley hull (Beddhu, 1998a), du* 4 dv* + dw* -0

to the barehull model 5415 series hull (Beddhu, 1998b), Oz* = Oy*  0z*

to the Series 6@ = 0.6 ship (Beddhu, 1998c) and to out 8 o P .
a more detailed stern analysis for the model 5415 series - + g ( + P ) + 5y (u*v*)
hull (Beddhu, 1999), and these results were presented at *

the Gothenburg conference (Beddhu, 2000). Initial veri- n 0 (W w*) = p*V2u*

fication and validation exercises of the unstructured non- oz*

linear free surface algorithm has been presented by Burg 9y* o .. b 2 * .
(2002), which includes a grid refinement study for flow Zz T = (u*v™) + 3y (“ + P +9y )
over a submerged NACA0012 hydrofail, flow around in-

viscid and viscous Wigley hulls, and flow around the bare- + (v*w*) = p*v>u*
hull model 5415 series hull. Oz
In this paper, results for the DTMB Model 5415 ow™* 0 . . 0 , . .
Series hull, which has a transom stern, are presented. The ot oar (™) + Oy* (v*er)
numerical results are compared against experimental re- P P
sults which include the hull profile for the barehull 5415 +8z* (w*2 n ; ) = wvViw* (2)
oo

and the stern region topologies for the unpowered and
powered fully-appended 5415. Because of the use of dmre variables in the preceding equation are normalized
structured grids, the actual geometry with the shaftststrwith respect to a characteristic length scalg énd free
rudder, the gap between the rudder and the boot and stream values of velocityli), density p.), and vis-
DTMB propellers 4876 and 4877 is used to generate tbasity (u,). Thus, the Reynolds number is defined as
grid. For the unpowered case, the propulsors are removBd,= U, L/v. Pressure is normalized wifh = (P* +

so a steady-state simulation is obtained; for the powergdgy* — P )/ poUZ,, WhereP* is the local dimensional
case, the propulsor is rotating providing an unsteady sinatatic pressure. Following (Chorin, 1967), an artificial
lation. Even though the nonlinear free surface implemetime derivative term@p,, /0t, wherep, = P/3) has been
tation assumes a steady-state flow, it is assumed thatabéed to the continuity equation to cast the complete set
unsteadiness produced by the propulsor can be adequai&lyoverning equations into a time-marching form. The



nondimensionalized equations can be written in integral The solution algorithm consists of the following

form as basic steps: reconstruction of the solution states at the
P . 1 . control volume faces, evaluation of the flux integrals for
—/ Qady + F-itdA = —/ G-iidA (3) each control volume, and the evolution of the solution in
0t Jo o9 Re Joq each control volume in time.

wheref is the outward pointing unit normal to the con-
trol volumeV. The vector of dependent variables and the
components of the inviscid and viscous flux vectors ¥ CONSTRUCTION

given as
P A higher order spatial method is constructed by extrapo-
Q= U 4) lating the solution at the vertices to the faces of the sur-
v rounding control volume. The unweighted least squares
w method (solved via QR factorization (Anderson, 1994)) is
used to compute the gradients at the vertices for the ex-
s© _Aat) trapolation. With these gradients known, the variables at
F.-ii= u® + ’:‘mP (5) the interface are computed with a first order Taylor series
v0O + ny P as:
woO + 7. P Qr=Qo+VQo-7 9)
0 wheref is a vector that extends from noddo the mid-
G.5— Mg Tag + NyTay + NzTy, 6) point of the edge associated with the control volume face

NgTyg + NyTyy + NyTy,
NgTog + NyTry +NTyy

in question.

RESIDUAL EVALUATION
whereg is the artificial compressibility parameter (typi-

cally 15 in this work),u, v, andw are the Cartesian ve-The governing equations are discretized using a finite vol-
locity components in the, y, andz directions, and,, Ume technique; thus, the surface integrals in Equation 3
f,, andn.,, are the components of the normalized contr8f€ approximated by a quadrature over the surface of the
volume face vector® is the velocity normal to a controlcontrol volume of interest. So, the numerical discretiza-

volume face: tion of the spa.\tial terms associgted with the control vol-
ume surrounding vertexresults in
O =i u+ v+ N,w+ a; @) o
o % +Re=0 (10)
where the grid speed; = — (Vi + Vyiiy + V2i0,).

where the spatial residuglcontains all contributions from

Note thatV, = Vi + Vyj' + V,k is the control volume . S N .
face velocity. The viscous stresses diven in E uationt discrete approximation to the inviscid and viscous term
Y- g q (K = Rinw + Russ). Also, the quantityy is defined as

are
du;  Ou; 4= JoQav.
Tij = (b + ) 9. T3 (8)
T Ty SPATIAL RESIDUAL
whereu. and ., are the molecular and eddy V'SCOS't'esl’he evaluation of the discrete residual is performed sepa-
respectively.

rately for the inviscid and viscous terms given in Equation
NUMERICAL APPROACH FOR NAVIER-STOKES 3. The Roe scheme (Roe, 1981) is used to evaluate the in-
EQUATIONS viscid fluxes at each face of the control volume. The alge-

braic flux vector is replaced by a numerical flux function,

implicit scheme applied to general unstructured grids Withe control volume face:

nonsimplical elements. The flow variables are stored at 1 1-

the vertices and surface integrals are evaluated on the me® = 7 (F(Qr) + F(Qr)) — §A (Qr—Qr) (11)
dian dual surrounding each of these vertices. The nonover- =~

lapping control volumes formed by the median dual corhereA = RAR™'. The matrixR is a matrix constructed
pletely cover the domain, and form a mesh that is dualf@m the right eigenvectors of the flux Jacobian, ani

the elemental grid. Thus, a one-to-one mapping exists pediagonal matrix whose entries contain the absolute val-

tween the edges of the original grid and the faces of tH&S of the eigenvalues of the flux Jacobian. The eigensys-
control volumes. tem used in this work is based on that reported in (Tay-
lor, 1991). Note thatd is evaluated with Roe-averaged



variables, which is simply the arithmetic average between Ag = VrIAQM T + QrAyT T (17)
left and right solution states in the case of incompressiigeriing the above two identities into Equation 15, one

flows. S _ arrives at the following expression:

For general element grids, it is expedient to use Al A AR B2 Al A Al
only edge-local information to compute the viscous fluxes. VITAQ" — I VAR
This allows the evaluation of viscous fluxes on each face At
of the control volume without regard to the varying ele- _ lAayr — 192 Apn—1

. . . n +02 (18)

ment types of the mesh. An algorithm in which no ele- +Q At
ment information is used outside of metric computations
is termed a “grid transparent” algorithm (Haselbacher9)99 + 1 R+l —
To this end, the viscous fluxes are evaluated directly at 1+ 6>

each edge midpoint using separate approximations for Mew, one must consider the Geometric Conservation Law
normal and tangential components of the gradient vec{@CL). This statement relates the rate of change of a phys-
to construct the velocity derivatives (Marcum, 1997). Ugeal volume to the motion of the volume faces:

ing a directional derivative along the edge to approximate oY . N

the normal component of the gradient and the average of Bt = /Q V-VdV=[ V, -ndA (19)

the nodal gradients to approximate the tangential com- di T dL bmd 1978)and | ]
ponent of the gradient leads to the following expressi cordingto Thomas and Lombard ( ) and later Janus

(Hyams, 2000b): 1989), the solution. of the volume conservation equation
must be performed in exactly the same manner as the flow
- — -1 As equations to ensure that GCL is satisfied. This proce-
VQi; ~VQ + [QJ. -Q;,—VQ- As] —|A_'s|2 (12) dure ensures that spurious source terms caused by volume
] ) changes are eliminated. Using the same time differencing
The weighted least squares method is used to evaluateé}gﬁression (Equation 14) to approximate Equation 19,
nodal gradients in the preceding formula.
AY" — - Ayt 1

1462 — n+1 20
TEMPORAL RESIDUAL At T5g, taoL  (20)

After the_ spatial terms havg be_en suitaply discretized, t\lj\yﬁere‘s}gg-léi =Y ien(o 17;’,‘3;1 -AnHL and N (0) is a list
time derivative term appearing in Equation 10 must be 8grnodes surrounding node Note that the left hand side
proximated. A general difference expression is availaleihe preceding equation is exactly the bracketed term in

for this purpose (Beam, 1978) (Taylor, 1993), and is giv@fyuation 18. Replacing the bracketed term and rearrang-

as follows: ing slightly gives the final form of the discretization of the
n_ 1At 0(Ag™) time derivative:
- . n+1 A _ n—1 A On—1
R 13 (1+ V™ AQn — V1 AQ" |
1+6, Ot 1+6, Qn%ggi + Rl — (21)

whereAg™ = ¢™*t! — ¢g". A first order accurate in time For incompressible flows, a divergence-free velocity field
Euler implicit scheme is given by the choicés = 1, at the end of each Newton iteration is desirable. To this
0, = 0. Correspondingly, a second order time accuragad, the contribution of the time derivative and GCL terms
Euler implicit scheme is given bg; = 1, 6§, = 1/2. to the residual are removed for the continuity equation.
Sincef; = 1 for both time discretizations used in this

work, Equation 13 can be further simplified: TIME EVOLUTION

At O 0 A Newton iterative time evolution scheme is applied, which
n __ n+1 2 A n—1 14 . . .
T =17 9, Ot (") 116, q (14) requires the solution of a sparse linear system at each non-
linear subiteration:

Using Equation 10 to replace the time derivative, gy P

n_ 0y A -m—1 —gpttm = 220 AQTHL™ (22)
A" — 1402 Aq - _ 1 pnt+l (15) 0 8@
At 146 where
By the definition ofg, one can writg = QV, whereQis  Sj+! (@)
the volume averaged solution variable vedtfV [, QdV. 146, V" ADD — g,V AOP 1
Then, the following two identities can be formed: _ 0400 Qgt b2V AQq (23)

Ag" = VHLAQ™ 4+ QrAY™ (16) + Q" Ry Lo, + R



where AQnttm = Qnrtlmtl _ Qntlm - Now, ex- The initial guess to begin the iteration Q™10 = 0.
panding the terms and performing the required differeimthe above formulaso; represents the combined invis-
tiations of$ results in the following expression for New-cid and viscous flux vector from nodeto nodei. A(0)
ton’s method: represents the set of neighbors for ndqeVy, (0) is the
ntl Andlm A A A1 list of neighbors such that the node lal@l) < £(0), and
(1+6:)V5™ (Qo ™ — Q) —0:V5 ™ AQg Ny (0) is the list of neighbors such that the node label
At £(i) > £(0)

BOUNDARY CONDITIONS

A +1 rn+l,m  —sndl | | . . .
+ Qg%g,GCL + Z Hy, - 7lg; = Viscous conditions are enforced by modifying the linear
iEN(0) system such that no change is allowed in the velocity,
(1+ 6:)VoHr and the pressure is driven according to the imbalance in
A the continuity equation in the boundary control volume
(Anderson, 1994). Farfield conditions are handled via a
SHL™ . bl ~ characteristic variable reconstruction; all boundarydion
D UL AQT i handled in an implicit fashion. The f f
300 0 ons are handled in an implicit fashion. The free surface
i€EN(0) boundary conditions will be presented below - in essence,
pEmHLm gkl at steady-state, the velocity is tangent to the free surface
Z TRoi_Toi pQpttm (24) (i.e. @7z, = 0)and the pressure B = 5, whereY
iEN(0) 9Q; is the elevation of the free surface above the undisturbed

- _ N _ waterline and the Froude numbetfis = 3;%
where AQF™" = Q¢ — Q4™ . For notational conve- J

: 0 . A symmetry plane boundary condition imposes
nience, both the inviscid and viscous terms are colIapsg% .% = 0 for any arbitrary variable). In addition, no

into a single flux functiond. Note that the iteration cang w is allowed through a symmetry surface; so, like a
[ ofrt10 = Qn : " . Pom
Zle startefd by. usmgl an |n|'tt|al gt;.uessf?\lfl t - @ th ﬁo“d wall conditiong = 0. To simulate symmetry condi-
sot,. per ?[rmmg.;)hni/ (t)neo: er? lon g. e\f[‘./ or:.s me do ons, a layer of phantom entities that is a mirror image of
per time step (with 1st order time discretization an MRe entities inside and connected to the symmetry plane is

GCL terms) is equivalent to a time linearization of thSreated; one element layer is mirrored. Thus, control vol-

spatial terms only. However, writing thq method in t,hiﬁmes on the symmetry plane are closed and behave just

T.r amew otr.k 'S F:r?re ge?eral 'ihan a straightforward UME interior control volumes. Phantom nodes created by

inearization of the nonfinear terms. .,._the mirroring process are updated in the same hierarchy as
To solve the resulting linear system, a bidire

. . . ; ) ibed for phant t th lleliza-
tional Gauss-Seidel solution algorithm is adopted. Spf(%_escnbed or phantom nodes generated by the paralleliza

. p . X tfon. Note that care must be taken to copy scalars, mirror
ting the matrix into diagonal, upper triangular, and low:

Sect irror t iately to th t
triangular parts ab‘l] _ [E] N [D] N [U], the Gauss-Seidel eclors, and mirror tensors appropriately to the symmetry

; . hantom nodes such that no fluxes are allowed through
sweeps may be written as the following two-step proc%]:z3

. . : . . R plane.
per subiterationk is the linear subiterative index):

o ~ TURBULENCE MODEL
£+ D]AQF 2 + [U] AQF = RH1™  (25) .
Both the one-equation turbulence model of Spalart and
[D + U] AQ*! +[L] AQFtz = gntlm (26) Allmaras (1992)(Sheng, 1999) and tipe- w turbulence
model (Coakley, 1985) are available within the solver. Con-
stants are taken from the versiongl- w model given in
O('Coakley, 1985). The interested reader is referred to these
references.
St lm ont The diffusive terms in both turbulence models

OHg," ™ - miy; ) are discretized in the same manner as the viscous terms

where it is understood thak(Q is evaluated at the +
1, m + 1 time level and Newton subiteration. The diag
nal, lower, and upper operators are defined as

1+6 I

At {eN(0) 0Qo for the mean flow, and the convective terms are computed
(27) via pure upwinding. Appropriate consideration is given to
gH™L™ |t maintain positive operators in the formation of the Jaco-
U= > W(') (28) bian matrix for the implicit solution of the transport equa-
i€ENT(0) ! tion(s). The respective turbulence models are incorpo-
HML™ gt rated with the mean flow solution in a “loosely-coupled”
L= Z W ) (29) procedure;thatis, the core governing equations are solved
2

1€NTL(0)
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@ VQ.7"  NONLINEAR FREE SURFACE ALGORITHM

[ Initialize Field @, Ve
\ Time st (7]
== : Q,v@,* Anonlinearfree surface is obtained for a steady-state sim-
| Cycle over local subdomains 7, e]* ulation by solving the kinematic free surface boundary
| Newton Iteration condition at each time level and imposing the hydrostatic
ComputevQ B Vo' pressure distribution based on the new f_ree surface eleva-
ComputeR - tion onto the free surface boundary within the mean flow.
Compute[A] After several time steps, typically on the order of 200, the
[ Linear subiterations | grid is moved to match the free surface elevations while
Matrix-Vector Multiply ] Aot conforming to the surfa}ces that in'tersect the frge surface,
UpdateAQ - such as the hull of a ship or the sail of a submarine; and as
L . the loosely coupled interaction between the free surface,
[Solve Turbulence Model the_Nawer-Stokes equatlons_ and the grid movemeqt al-
| : : [, pe]’ gorithm converges, the solution approaches the nonlinear
| Solve Kinematic Free Surface ., Pp.]t  free surface solution.

* sequential updating hierarchy GOVERNING EQUATIONS

T concurrent updating hierarchy

Figure 1: Iteration hierarchy used for the parallel unstru
tured solution algorithm

In deriving the kinematic free surface boundary condition,
the free surface(z,y, z,t) = 0 is considered as a mate-
rial surface (i.e., no flow travels through the surface), so

first, then the turbulence model is solved independently. Dn _ 0 (30)
This procedure allows for easy interchange of the turbu- Dt
lence models. or
0 0 0 0
PARALLELIZATION _77+(u_V$)_77+(U_Vy)_77+(w_Vz)_TI -0 (31)
ot Oz o 0z

For quick turnaround time in a design environment, it is

essential to parallelize the flow solution algorithm. ThBy making the assumption that the free surfgoean be
present parallel unstructured viscous flow solver is basexpressed ag(z, y, z,t) = y — Y (z, 2,t) = 0, this equa-

on a coarse-grained domain decomposition for concurréint reduces to

solution within subdomains assigned to multiple proces v oY oY

sors. The solution algorithm employs iterative solution of/— + (u — V) 5— — (v = V) + (w—V,)5— =0 (32)

the implicit approximation, with the concurrent iteration ot Oz 0z

hierarchy as shown in Figure 1. Also, domain decompAt steady-state, the kinematic boundary condition becomes
sition takes place with each node in the domain uniquely

mapped to a given task. The code employs MPI message (@ + ay) - (5_Y ] 8_Y) -0
passing for interprocessor communication. oz’ 7 0z (33)
In general, the parallelization of an existing val- (@ + az) - angs =0

idated flow solver should satisfy several constraints.tFirs

anﬁi r;}os;mptonrtfi{lrg, then?c;:urrricyg.fithe (t)r\:erallI ntli”?]er'%aherea _ \/1 N (%)2 + (%)2, so the flow is tangent

SCteed '?1 ;rsalle(ljm es(t:ch1apeoa oiZ—tlo.—i.r,]e (so?:)elsj, gn(;:gnmi:(tahe free surface at steady-state.

pgth thle Eol tion ccl)Jm t(\a/d in serial mode ForFt)he . The pressure in the numerical simulation at the

\r,\(lalnt numerigall aIgoritE:”Jn th;s abiIIity has béen shownu{ree surface is set based on the free surface elevation. For
' SO e original, dimensional equations, the pressure at the

(Hyams, 2000). Also, the code must be efficient in its ug g g P

of computational resources. This characteristic is mer?ﬁndimensionalizatiori? _ % with P* =

sured in terms of memory usage and scalability, as we ) PeolUs v

as the fact that the parallel code should degenerate to fhe and- =Y, the pressure is clearly set 0= £,

serial version if only one processor is available. Finallywhere the Froude number%.

the consequences of the inevitable domain decomposition
should not seriously compromise the convergence ratd B M ERICAL APPROACH FOR FREE SURFACE

the iterative algorithm. The kinematic equation for the linear free surface is solved
via a Galerkin approach. In this approach, an algebraic
equation is obtained for each nogidy multiplying the




governing equation by a weight functiam;(z,z), ap- ofthe viscous surface is on the ord@r-¢ for model scale
proximating the terms in the governing equation by usirsimulations and0~3 for full scale simulations.

linear and bilinear interpolating functiogs(z, z) and in-
tegrating over the computational domain, or FREE SURFACE BOUNDARY CONDITION

. . At the free surface boundary the pressure is set to the hy-
/ 0;(z,7) (6_Y + (ﬂ _ Vz) oy (ﬁ _ Vy) drqstatic pressure dP = F ——=. Determining the velocity

Q ot oz to impose on the boundary is more difficult. If the ve-
locity were forced to be tangent to the free surface (i.e.,

-\ 9V (@ + at) - fgs = 0), then the free surface equation would

(“7 V) 5) =0 (34) reduce to2Y" = 0, and the free surface could not evolve.

Thus, this tangency condition is relaxed to allow the free

where the interpolated free surface elevatioli (s, z) = surface to evolve.

>, Yioi(z, z) and the velocities are of the foritfz, z) = This boundary condition is implemented using
> uidi(z, 2). a characteristic variable boundary condition, similar to

For the triangular elements, the resulting equﬁle derivation used for the farfield boundary condition.
tions are integrated either exactly or using 7 point Gauser hyperbolic systems, flow information travels along
quadrature, and for the quadrilateral elements, the iné&aracteristics; and for three-dimensional incompréssib
grals are solved either using 3 or 6 point Gauss quadiaw, three characteristics originate upstream, and org ori
ture in both directions or by decomposing the quadrildfates downstream. If the flow is traveling out of the do-
erals into 4 overlapping triangles and evaluating them @&in (i.e,(@ + a;) - 71 > 0), then only one characteristic
triangles. The examples given herein use 7 point Gaunegeds to be specified from the outside, which is derived
quadrature for the triangular elements and 6 point Gadig¥m the hydrostatic pressure. If the flow is traveling into
quadrature for the quadrilateral elements. A first-ordéte domain, three characteristics need to be specified from
backward time discretization of Equat|on 34 is used féhe outside. The characteristic variables are derived from

the temporal derivative, wheld = Y"*¥" and the considering the inviscid fluxes across the the boundary
spatial terms evaluated at time level+ 1. This dis- face, via a0
cretization results in a linear algebraic system of the form — +VF-i=0 (36)

R;s (YT Y™) = 0. Since these equations are linear in ot
the unknown varlabléa’”Jr1 ateach time level (i.e., the ve-wherer is the normal to the grid for each boundary face.
locities are frozen), the Jacobian matrix is calculateg oriThe inviscid flux term can be rewritten as

once per time level. A Gauss-Seidel iterative solver simi- oF

lar to the one used to solve the discretized Navier-Stokes VF = —-VQ = RAR'VQ (37)
equations is used to identify the solution of the kinematic 9Q
free surface equation by solving whereA is a diagonal matrix with the eigenvalués 0,
OR; © + cand® — ¢, where® = uf, + viiy + wh, + a; and
s n+l,m _ _ n+1,m n
[aYn+1] Ay =R ¥) (35) c= (@ - %)2 + . Premultiplying byR !,
whereyntim+l — yntlm 4 Ayntlm gpdynt! — 10Q 1 5
yntlm+l when||Ay™th™|| < tolerance. R ot T ARTNVQ -7 = (38)
Within the viscous boundary layer, special care 1 _ poigin
is needed in solving the kinematic free surface equatié€€Zing the matrix @),
On viscous surfaces, the flow velocity plus the grid ve- OR-1Q .
locity (i.e., @ + a;) is set to zero, which prevents the free 5t + AV (Ro—lQ) =0 (39)

surface from moving at the viscous surface. Physically,

however, surface tension effects force the free surfaceging the definitiori? (Q) = R;'Q, Equation 36 decou-

rise and fall along the viscous surfaces. Since the soly@s into four equations for the four characteristic vari-
does not simulate surface tension, another method mMiislesiv as

be employed to move the free surface near the viscous sur- ow LAV A =0 (40)
faces. Following the method used in the structured solver, ot

the free surface at a certain distance from the viscous Stiree of the characteristics are obtained from upstream
face is extended at a constant height to the viscous surfaggues, and one of the characteristics is obtained from
This distance is typically on the order Bfx 10~* times downstream values. In the case of a boundary face, there
the characteristic length, whereas the point spacing offyre a set of characteristics associated with the inside flow



Win(Q™) and a set of characteristics associated with tirgo the volume grid, the use of a linear spring analogy
outside flowi¥ °#(Q°*t). The flow variables on the bounavhere each edge is a spring whose stiffness is determined

ary face are determined from the appropriate charactelig-the length of the edge, a torsional/linear spring anal-
tic variables vial) = R,W. For flow traveling out of the ogy where the angle between the edges affects the stiff-
domain, the characteristic variables are chosen to be ness of the springs in the mesh, or solving the linear elas-

in ticity equations to propagate the perturbations within the

w1 grid. The spring analogy is computationally efficient but

W = wf.n (41) is notrobust. Both the spring analogy and the Laplacian
wo3ut solver generate elements with negative volumes for mod-
Wy erate amounts of movement, on the order of the size of 3

to 4 elements. Solving the linear elasticity equations to
fgove the grid is robust, but the computational cost asso-
iated with this method is the primary drawback.

Thus, following the work of (Farhat, 1998) and
extendingit to three dimensional grids, the torsionadéin

because the fourth eigenval@®e — ¢ is negative, while
the other eigenvalues are positive. For flow traveling in
the domain, only the third eigenvalue is positive, so tHf&?
characteristic variables are chosen as

wPt spring analogy has been developed and applied to the prob-
W = wg_"t (42) lem of moving the grid to match the linear free surface el-

wy" evations. For tetrahedral grids, this method is quite robus

wg allowing severe distortions on the surface while maintain-

ing positive volume elements. In practice, this algorithm
Hlows up to approximately 80% compression of elements.
hin the boundary layer, (i.e., near the viscous surfgces
grid moves the same as the points on the boundary.

For farfield boundary conditions, the characteristic va
ables associated with the outside flow are taken as
freestream variables. For free surface boundary conﬁjfé

tions, the characteristic variables for the outside flow is grid movement method is computationally costly but

determineq fr.om the hydrostgtic pressure aqd the °”'¥"ﬁ¥?c5 ides excellent robustness for the free surface solver.
able velocity information, which is the velocity on the in- The linear spring method for moving an unstruc-
S'd?ﬁ H0¥vtehver, tlhls.tvelocny IS m?tdr']ﬂ?q by :etmovmgz fured grid is presented in (Batina, 1989) where each edge
Fhor 'O.r:jo the velocity component that Is not tangen 1 the grid is replaced by a linear spring whose stiffness is
€gnd, via inversely proportional to the length of the edge. Thus, for
GO = (T + ag) — v (@ + ar) - 1) (@ + ar) (43) the edge connecting nodeandy, the stiffnessk;; of the

spring is
where & 1 1 (45)
Z] = - = —
f—(@ta)-h if 1< (@+a)-h<0 (@i —2))* + (s —9)2)P? I
= 1 if (@+a)-7<-—1 where the coordinates of nodésind j are (z;,y;) and

(44) (z;,y;) andp is a predetermined coefficient, usually 1 or
Whenvy is 1, the veIociEy imposed from the outside is tar2, andl;; = /((zi —z;)? + (y; — y;)?). Given a set
gent to the grid (i.e.u°%t - 4 = 0). When the velocity of nodal displacements or forces acting on the boundary
was not modified or constrained in some fashion, the freéthe computational grid, the following equations for the
surface algorithm became unstable for flow into the dinterior displacements are solved iteratively until ak th
main due to the inconsistency of using downstream infderces are in equilibrium

mation. This modification provides enough control over S kij Ax?

the velocity to maintain stability of the algorithm, and if Aghtt = ﬁ

the grid is allowed to move to match the free surface, then i . (46)
this modification ensures that the flow will be tangent to Ayt = 2 ki Ay;

the free surface at convergence. ! > kij

GRID MOVEMENT ALGORITHM wherei is summed over all edges connected to ngde

This method is easily extended to three dimensions and
After several time steps, the grid is moved to match tiiee computationally efficient requiring only a few Jacobi
free surface while conforming to any solid surfaces intaterations to achieve an acceptable level of accuracy. Sev-
secting the free surface, with displacements on the surfacal researchers have used this method to move nodes in
being propagated into the volume grid. Several methagisstructured grids for simulating flows around objects in
are available for this grid movement, including the use oélative motion (Singh, 1995) and for design optimization
a Laplacian solver to propagate the surface perturbatigAsderson, 1997).
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Figure 2. A Displacement in y-direction results in dis-
placements in x and y directions Linear Sprin

Technically speaking, these equations do not sim-
ulate the behavior of a network of springs because there
is no interaction between theandy coordinates. A dis- .
placement in one coordinate will not influence the loca- |
tion in the other coordinate, as would be the case for a ) ]
network of springs. An example of this coupled inter- 14 sional Spring Linear Spring
play is shown in Figure 2, where a displacement in the
y-directionis applied to nodgwhich results in a displace-
ment in both directions for node To simulate the behav-
ior of a network of springs, the following set of equations
for each spring must be summed over all springs:

Figure 4: Placement of Linear and Torsion Springs

The stiffness of the torsion sprin@;;;, is inversely pro-
portional to the sine of the angle, so that the stiffness
kij [(Aa:i — Azy) cos? o grows without bound as the angle decreases towards zero

+ (Ay; — Ay;) cosasin a “n) or increases towardss0°, or

forces in the x-direction

forces in the y-direction 1
. Cijk = - 2 pijk
kij [(Az; — Azj) cosasin o sin” 6;

(48)

Ay sin? g
+(Ayi — Ayj)sin” o where#”* is the angle centered at noddormed from

For either representation, however, this methd@e edges; andik. Thus, as a node moves towards an
often fails for complicated geometries and for large charféde, the angle goes towards zero, and the stiffness of the
in the boundary, because negative areas are generated {RiRn spring grows. The sine of the angle is squared to
a node crosses over an edge in the grid. The creatR§gvent a negative stiffness.
of negative areas is illustrated in Figure 3, where node In (Farhat, 1998), the equations for the torsional
1 is pushed downwards and nodm forced to cross the Spring methods are derived fOI’tWO-dimenSiona| gl’idS, and
edge between nodé@sand3. The reason for this failurean iterative solution method is presented. In the present
is that the stiffness in the linear spring method preve¥§rk, these methods have been extended into three di-
two nodes from colliding but does not prevent a nodBensions, which provides an adequate level of robustness
from Crossing over an edge' As two nodes get closer f@[ the grld movement algorithm. The derivations of the
gether, the stiffness increases without bound preventthgee-dimensional torsional spring equations are beyond
the collision; but there is no mechanism to prevent a note scope of this paper and will be presented elsewhere.
frpm crossing_an edg_e, becquse these Crossovers can 0sQUl \ 1 pL ES
without the stiffness increasing without bound.

To provide a more robust movement algorithiihe two examples given in this paper deal with the fully-
for unstructured grid, Farhat (1998) developed an algappended DTMB Model 5415 series hull, one without
rithm to prevent a node from crossing an edge by usipgopulsors and the other with propulsors rotating. Ex-
torsional springs around each node, as shown in Figurgdérimental data for comparison was provided by Ratcliffe



at the Naval Surface Warfare Center Carderock Division Hull Profiles for Model 5415 Hull
(NSWCCD) (Ratcliffe, 1990, 2000), which consisted pri- 0018 _ Fre028 Remi M

marily of the profile of the free surface intersection with
the hull and free surface elevations in the stern of the hull.

]
0.015 A

Barehull (Structured)
Unpowered

The Model 5415 series hull has a transom stern, which o012 Powered
\ o DTMB Experimental Data

produces a sizeable “rooster tail” in the water surface be-
hind the stern. The parameters for the various runs are
given in Table 1.

0.009

0.006

0.003

Free Surface Elevation

| Parameter | Value | ol
SpeedJ, (m/sec) 2.06 0008 |
Ship LengthZ (m) 5.72
Propulsor RPM 436 0% P i
Advance Ratio (Rev. per L 20.177 pieance fom Bow el St
R':er;#jzleiljtTrggglg)e) 11_62523””% Figure 5: Free Surface / Hull Intersection
Omega 126.59 rad/second
At for 1.5 degrees 2.068089 x 10~* which the simulation was run at a constant time step, so
Table 1. Flow parameters for Model 5415 Series  that a time accurate simulation could be achieved for the
simulations. powered case. To ensure a valid comparison, both simu-

The grids used within the following simulations were geljlqt|ons were run at a constant time step. For the powered

erated by AFLR3 (Marcum, 1998) and consist of prisn{ﬁ‘:r?L{ims_gcsgaeseggigms use instantaneous data rather
in the boundary layer generated from the triangles on the g '

viscous surfaces, tetrahedra and pyramids in the transitigNPOWERED FUL LY-APPENDED 5415

region at the edge of the boundary layer grid and tetrahe- ) ]

dra outside of the boundary layer. On the free surfak8® unpowered fully-appended 5415 simulation used the
grid, quadrilaterals exist within the boundary layer regic®@Me grid as the powered fully-appended 5415 simulation
and triangles exist outside of the boundary layer. The J¥ih the exception that the grid around the propulsor/hub
of tightly packed prisms within the boundary layer allow¥@S changed and did not rotate. Hence, the free surface

for good resolution of the boundary layer effects and tyg_rid was identical and the forces acting on the free surface
ically generateg* values on the order of 1.0. near the bow should be almost identical between the sim-

Information about the size of the grids used iHlations. The profile of the intersection between the free

these simulations is provided in Table 2. For the powerédrface and hull is given in Figure 5. This profile com-
and unpowered simulations, the same grid is used exdepfes the results for the powered and unpowered simula-
for the regions around the two propulsors. For the ufions with the experimental results from the Naval Surface
powered grid, the propulsors were replaced by hubs aigrfare Cen_ter Carderock D.IVISIOI”I runs (Ratcliffe, 1990,
were not rotated. For these simulations, the grid includ@g90) and with the computational results of the structured
both sides of the hulls, so that maneuvers using these gflg¥ solver UNCLE (Beddhu, 1999, 2000). The profile
could be studied in the future. The hull, struts, ruddei®’ the.powere.d and uppowered cases agree W't_h each
and propulsors were symmetric about the centerline, 19fer nicely until approximately/ L = 0.6 at which point
because of the use of unstructured grids, the grid was [t unsteady influence of the propulsors are felt. The
symmetric about the centerline. These simulations wd}@W Wave in the unstructured grids are higher than for

run locally on a LINUX-based cluster running MPI-Pro. the structured grid and seem to agree more with the bow
wave elevation of the experiment. The drop behind the

| | Unpowered| Powered| bow wave is more severe for the unstructured simulations
Nodes 4251444 | 5437074 - this difference may be caused by a lack of refinementin
Tetrahedra] 8195672 | 9912263 this region.
Pyramids 23592 35101 Figure 6 shows the bow wave for the unpowered
Prisms 5446868 | 7160111 simulation head on, as well as the bulbous bow underneath
Processors 32 42 the free surface. In Figure 7, the surface grid near the bow
Table 2: Information about Grids. is shown. This region undergoes the largest displacement

due to the changes in the free surface, and yet the grid
In each case, the simulation was run with a constant Ckovement algorithm is able to produce nice quality in the
until the gross features in the flow field developed, after



Figure 6: Bow Wave for Model 5415

Figure 8: Contours of Free Surface for Unpowered 5415

Figure 7: Grid Moved to Match Free Surface Elevatio
near Bow

)

distorted grid.

The hullform was symmetric about the cente
line, but due to the use of unstructured grids, neither t
volume nor the surface grids were symmetric. This asy
metry in the grid produces an asymmetry in the discretiz;
tion error within the code, but the free surface, evenin tt
stern region, regains symmetry as the solution approacl,
steady-state. In Figures 8 and 9, contour plots of the fr
surface elevations around the unpowered 5415 are p
sented showing the Kelvin wake pattern originating from

the bow and the “rooster tail” in the stern region. For tHeigure 9: Contours of Free Surface for Stern Region of

unpowered case, the solution is nearly symmetric. Dueldopowered 5415
the coarseness of the grid away from the body, the free
surface dissipates approximately one body length behind
the hull. By extending the resolution on the free surface,
the free surface waves could be carried further. The free
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Figure 10: Comparison with Experimental Data for Un
powered 5415

surface in the stern region was also compared with the ¢
perimental data from Ratcliffe at NSWCCD and is sho
in 10. The agreement for the unpowered case is rema
able, with similar features and elevations. There is an
ticeable shift forward for the computational results.
Finally, the free surface-stern intersection for th
powered and unpowered simulations are given in Figu
11, as well as the profile for the structured barehull sim
lation. The structured barehull simulation was run using
symmetry plane, so its profile was mirrored abgut 0.
The unpowered simulation is almost symmetric about the
stern, whereas the unsteadiness _in the powereq simulatiqflugure 12: Vertical Velocity for the Unpowered 5415.
has created some asymmetry (this asymmetry is probably
a result of not being as highly converged as the unpowered
case). For the powered simulation, this stern profile is #ovm along the free surface behind the stern. In Figure 13,
instantaneous cut, and is not as converged as the unpthg-instantaneous vertical velocity for the powered case is
ered simulation. The profiles for the simulations diffeshown from the same location and on the same scale. The
greatly. The reason for this difference lies primarily witewirl in the velocity field generated by the propulsors are
the difference in the flow field behind the rudders. For tiidearly seen and indicates that the propulsors are rotating
barehull, the struts, shafts and rudder have been remowadboard over the top. The velocities are much more ex-
so the flow has not been slowed nor straightened, thtmme at the free surface behind the stern, which results in
the flow passing the stern is faster for the barehull cabe drop in the free surface elevation along the stern.
than for the unpowered case. For the unpowered case,
flow has been slowed by these appendages and straiéh%vERED FULLY-APPENDED 5415

ened by the rudder, so that the flow is S|0W€r, and the freﬁe powered fu||y_appended 5415 simulation was per-
surface is not sucked down. And for the powered casgsmed using the same parameters as the unpowered case,
the propulsors have accelerated the flow past the rudd@yfigh the exception that the powered case rotated the ac-
which sucks the free surface down. In Figure 12, the veirl propulsors used in the experiment. As a result, a pe-
tical velocity on the free surface and for a cutting plangdic solution is expected for the powered case. Figure
jUSt aft of the stern are presented from a view beneath mshows the drag on the port propu]sor as well as the to-

hull, showing that the velocity is relatively uniform beta| drag on the hull, struts, shafts and rudders and on the
tween the rudders and the vertical velocity is nearly uni-



Figure 13: Vertical Velocity for the Powered 5415 (InstarFigure 15: Contours of Free Surface for Stern Region of
taneous). Powered 5415

Drag (Thrust) for Powered 5415
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Figure 14: Drag (Thrust) on Powered 5415. Figure 16: Comparison with Experimental Data for Pow-
ered 5415

overall 5415. The drag on the propulsors is negative be-

cause the propulsors are introducing thrust into the sinfle @ssumption in the nonlinear free surface algorithm that

lation. The drag is clearly periodic, approximately repea*he free surface is steady-state when the flow is clearly un-

ing every 1/5 of the propulsor rotation, since the propuiteady.

sors had 5 bladgs. The overall drag is_ reducing slightly i&'ONCL USIONS

dicating that a highly converged solution has not yet been

achieved. Arobust, nonlinear free surface algorithm coupled with an
A contour plot of the free surface in the stern rencompressible Navier-Stokes solver on three-dimensiona

gion for the powered case is shown in Figure 15 and showsstructured grids has been presented. The underlying un-

that the flow field is nearly symmetric. Finally, the sterstructured solver has been developed to simulate turbulent

region for the powered case is compared against the exfeindary layer effects and is capable of performing rud-

imental results from NSWCCD in Figure 16. The expeder and propulsor induced maneuvering. The addition of

imental results are time-averaged, whereas the compu@nlinear free surface capabilities is a necessary step to-

tional results are instantaneous. The height of the “r@osteards the simulation of maneuvering surface vessels.

tail” for the computational results is higher than for the The nonlinear free surface algorithm is an ex-

experimental results. This difference may be caused tepsion of the algorithm used in the structured code UN-



CLE developed by researchers at Mississippi State Unj2] Anderson, W. K., and Venkatakrishnan, V., “Aero-
versity. The kinematic free surface equation is solved at dynamic Design Optimization on Unstructured
each time level, and the hydrostatic pressure is imposed Grids with a Continuous Adjoint Formulation,”
on the Navier-Stokes solver via a characteristic variable Proceedings of the 35th AIAA Aerospace Sciences
boundary condition. After several iterations, the grid is  Meeting and Exhibijt AIAA Paper 97-0643, Jan.
moved to match the free surface while conforming to the 1997.
underlying geometry, using a three dimensional extension ) . o
of the torsional spring method (Farhat, 1998). By allow{3] Batina, J. T, Unsteady Euler Airfoil So-
ing the grid to move, a nonlinear free surface solution is  Utions Using  Unstructured Dynamic Meshes,’
obtained. 27th AIAA Aerospace Sciences MeetiddAA Pa-

In this paper, the free surface around the fully-  Per 89-0115, Jan. 1989.
appende_d DTMB Model 5415 serigs hull with and with-[4] Beam, R. M., and Warming, R. F., “An implicit
out rotating propulsors has been simulated. The hull pro-" ¢, tored scheme for the compressible Navier-Stokes
files for both smulapons upstream of the propulsors is in equations,” _AIAA Journal Vol. 16. No. 4, April
close agreement with each other and adequate agreement 1978, pp. 393-402.
with the experimental data and with computational results
using the structured solver UNCLE. The contours of th¢5] Beddhu, M., Taylor, L. K., and Whitfield,
free surface elevations for both simulations show thatthe D. L., “A Time Accurate Calculation Pro-
free surface simulation is symmetric even though the grid cedure for Flows with a Free Surface Using
was not symmetric. And the flow in the stern region for ~a Modified Artificial Compressibility Formula-
both geometries is symmetric and agrees well with the ex- tion,” Applied Mathematics and Computatiovol.
perimental data generated by Ratcliffe at NSWCCD. Dif- 65, 1994, pp. 33-48.
ferences in the free surface at the stern can be attributed ] )
to differences in the velocity field between the propul{6] Beddhu, M., Jiang, M. Y., Taylor, L. K., and Whit-
sors and between the rudders. More work is necessary field, D. L., “Computation of Steady and Un-
in demonstrating that the powered simulation does have a Stea,c’jy Flows with a Free Surface Around the Wigley
periodic free surface, while the current work has shown Hull.” Applied Mathematics and Computatiowol.
that the drag on the geometry is nearly periodic. 89, 1998, pp. 67-84.

Future work includes performing these same si 7] Beddhue, M., Jiang, M. Y., Whitfield, D. L., Taylor
ulations at full scale Reynolds number, analyzing the ef- * |« 41 Arabshahi. A.. “CED Validation of the

fects of stern flaps on the Model 5415 series hull forms  £rae Surface Flow Around DTMB Model 5415 Us-

and Series 6@y = 0.6 ships, simulating flow around ing Reynolds Averaged Navier-Stokes Equations,”
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