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ABSTRACT
Simulations of maneuvering surface ships us-

ing high-fidelity viscous computational fluid dynam-
ics requires the capability to model the conservation
of mass and momentum via the unsteady Reynolds-
averaged Navier-Stokes, along with appropriate tur-
bulence modeling, the capability to rotate and de-
flect appendages, accurate force and moment pre-
dictions and robust and efficient unsteady nonlinear
free surface capabilities. Simulations of flow around
transom sterns for naval combatants introduces addi-
tional complexities due to grid generation issues aris-
ing from wetted or unwetted conditions. Finally, to
simulate flow for fully-appended configurations with
struts, rudders, shafts and propellers, unstructured
grids offer much promise due to the geometric com-
plexities. In this research, a three-dimensional un-
structured mixed-element flow solver of the incom-
pressible Reynolds-averaged Navier-Stokes equations
with various turbulence models and nonlinear free
surface capabilities is studied with the goal of address-
ing some preliminary issues for rudder-induced, pro-
peller driven, six-degree-of-freedom maneuvers. The
research presented herein is divided into three topics,
each focused on numerical simulations of the DTMB
Model 5415 series hullform. The first topic concerns
the accuracy of the free surface and of the forces and
moments generated by the unstructured flow solver.
Results from a grid refinement study is used to de-
termine the level of grid refinement that are required
for accurate predictions of the forces and moments for
this code. The second topic covers two different types
of steady-state maneuvers, the constant drift case and
the constant turn case. Flow around the Model 5415
hullform at drift angles from 1 to 5 degrees are pre-

sented, as well as flow for turns of constant radius
ranging from 6 to 24 ship lengths. The third topic
is a prescribed maneuver for the model 5415 hull-
form with a linear free surface. Simulation data from
a rudder-induced, propeller-driven maneuver with no
free surface (i.e., the free surface was a symmetry
plane) is used to prescribe a maneuver for the Model
5415 hullform. Due to the complexities of moving the
grid at each time step, only a linear free surface was
used, so that the grid movement algorithm is ignored.

NOMENCLATURE
Y Free surface elevation
~u Velocity (u,v,w)
at Grid speed (velocity) −(Vx,Vy,Vz)
χ U-MUSCL parameter
P Pressure
Fr Froude numberU∞√

gL
β Artificial compressibility coefficient
Q Vector of flow variables
~F Inviscid flux vector
~G Viscous flux vector
τi j Viscous stresses
n̂ Outward pointing unit normal to face
n̂f s Normal at free surface
~r Vector along edge between two nodes
A Inviscid flux Jacobian matrix
R Matrix of right eigenvectors ofA
Λ Diagonal matrix of eigenvalues ofA
W Characteristic variables
φ j Finite element weight function
γ Free surface velocity restriction coeff.



INTRODUCTION
Modeling the free surface generated by surface

ships and by submerged vessels near the water sur-
face is important for proper understanding of the flow
around these vessels. In particular, the free surface
changes the resistance of the vessels through the wa-
ter by changing the pressure distribution and the wet-
ted surface area. The free surface affects the loca-
tion and magnitude of the vortices that originate from
various locations, including the bow, appendages and
propulsors, which can greatly affect the performance
of the propulsors. The wave signatures of ships and
submarines is also of importance. Surface vessels un-
der investigation by ship designers attempt to mitigate
the negative influences of the free surface interaction
on cavitation, power requirements and wave signature
and attempt to use the free surface to improve the per-
formance in other ways. In addition to the ship cruis-
ing straight and level, the effects on the ship’s perfor-
mance caused by maneuvering through a change in
direction, or through various sea states, especially in
regards to wave signature, sea-keeping and cavitation
in littoral water are important in the designs and can
not be readily tested by experiment.

A long-term goal of the research into numerical
simulations is to develop the ability to study the per-
formance of a full ship design, including the interac-
tions of the various appendages, sonar domes, rud-
ders, shafts and propulsors, as the ship maneuvers in
response to changes in the settings of the rudders and
propulsors. To accomplish this goal, efficient and ac-
curate free surface simulations are needed. Other nec-
essary components to achieve this goal include capa-
bilities to monitor the onset of incipient cavitation, to
perform simulation of several vessels in motion rel-
ative to one another and to adapt the grid to capture
vortices in the water.

Currently, the implicit unstructured code being
developed by researchers in the Computational Sim-
ulation and Design Center at Mississippi State Uni-
versity solves the three-dimensional, incompressible
Navier-Stokes equations, using an edge-based, flux-
differencing finite volume method with Roe-averaged
variables. The unstructured flow solver was success-
fully parallelized (Hyams, 2000a), and the code has
been ported to a wide variety of high-performance
machines. The unstructured grid generator (Marcum,
1998) has the capability of building highly stretched
high-aspect ratio grids near viscous surfaces, which
include higher order elements such as pyramids and
prisms, and allows the flow solver to fully resolve
boundary layer features. The unstructured flow solver
is also capable of rotating the propulsors and deflect-
ing the rudder appendages. And in conjunction with
the grid generator, the flow solver can simulate flow
at full-scale Reynolds number, withy+ values on the

order of 1.0.
At each time step, the nonlinear free surface al-

gorithm solves the kinematic free surface equation

∂Y
∂t

+(u−Vx)
∂Y
∂x

− (v−Vy)+ (w−Vz)
∂Y
∂z

= 0 (1)

whereY = Y(x,z,t) is the free surface defined as a
single-valued function over thexz plane,(u,v,w) are
the velocity components in the coordinate directions
and(Vx,Vy,Vz) are the grid velocities. A flow-through
boundary condition for the free surface based on char-
acteristic variable boundary conditions is used, with
the pressure on the free surface set toP = Y

Fr2 where
P is the pressure andFr is the Froude number. Af-
ter several time steps, the grid is moved to match the
free surface while conforming to the geometry, us-
ing a three dimensional extension of Farhat’s torsional
spring method (Farhat, 1998). This grid movement al-
gorithm is quite robust, allowing for moderate to ex-
treme distortions as required by the free surface simu-
lations. As the solution converges, the flow along the
free surface becomes tangent to the free surface, and
the nonlinear free surface solution is obtained.

Much of this work is an extrapolation of the free
surface algorithm used within the three-dimensional
structured code UNCLE also developed at Mississippi
State University. Beddhu (1994) developed the struc-
tured free surface solver, using a modified artificial
compressibility formulation. This algorithm was ap-
plied to steady and unsteady flow around the Wigley
hull (Beddhu, 1998a), to the barehull model 5415 se-
ries hull (Beddhu, 1998b), to the Series 60CB = 0.6
ship (Beddhu, 1998c) and to a more detailed stern
analysis for the DTMB Model 5415 series hull (Bed-
dhu, 1999), and further results from simulations of
this hullform were presented at the Gothenburg con-
ference (Beddhu, 2000). Initial verification and val-
idation exercises of the unstructured nonlinear free
surface algorithm has been presented (Burg, 2002a),
which includes a grid refinement study for flow over
a submerged NACA0012 hydrofoil, flow around in-
viscid and viscous Wigley hulls, and flow around the
barehull DTMB Model 5415 series hull. More com-
plicated free surface simulations around the DTMB
Model 5415 series hull with rudders, shafts, struts and
propulsors have been attempted (Burg, 2002b), demon-
strating the need for complicated gridding technology
and the successful simulation of a rotating propulsor
near a nonlinear free surface.

In this paper, the barehull DTMB Model 5415 se-
ries hullform will be analyzed exclusively. The pri-
mary goal of this work is demonstrate that the non-
linear free surface capabilities within the unstructured
flow solver are adequate for simulations of moder-
ate turns into the flow of approximately 5 degrees.



Force comparisons for several different angles of yaw
and for several different turning radii are presented,
as well as force comparisons and free surface com-
parisons for a grid refinement study. Finally, a pre-
scribed maneuver with a quasi-linear free surface is
performed, using the grid that was moved to match
the free surface for the converged steady-state straight
level simulation.

In the next section, the Navier-Stokes solution al-
gorithm is reviewed. Then, the free surface algorithm
is presented, which includes the method for solving
the kinematic free surface equation, the imposition of
the hydrostatic pressure on the Navier-Stokes equa-
tions and the grid movement algorithm. Finally, the
results for the DTMB Model 5415 series simulations
are presented.

NAVIER-STOKES SOLUTION ALGORITHM
Three different sets of equations are solved in the

process of simulating the flow around surface vessels
and submerged vessels near the water surface. The
unsteady incompressible Reynolds-averaged Navier-
Stokes equations, which are presented here in Carte-
sian coordinates and in conservative form, are solved
to determine the velocity and pressure within the com-
putational domain. Several turbulence models are avail-
able including the one-equation Spalart-Allmaras tur-
bulence model, andq−ω, k−ε andk−ω two-equation
turbulence models, to simulate the turbulent viscos-
ity primarily within the boundary layer, and the kine-
matic free surface equation is solved to advance the
free surface in time.

Governing Equations
Assuming that gravity acts in the y-direction (i.e.,

the vertical direction), the incompressible Navier-Stokes
equations can be expressed in dimensional form, de-
noted with superscript∗, as

∇ · (~u∗) = 0

∂u∗

∂t∗
+ ∇ · (u∗~u∗)+

∂
∂x∗

(

P∗

ρ∞

)

= µ∗∇2u∗

∂v∗

∂t∗
+ ∇ · (v∗~u∗)+

∂
∂y∗

(

P∗

ρ∞
+gy∗

)

= µ∗∇2v∗

∂w∗

∂t∗
+ ∇ · (w∗~u∗)+

∂
∂z∗

(

P∗

ρ∞

)

= µ∗∇2w∗

(2)

The variables in the preceding equation are normal-
ized with respect to a characteristic length scale (L)
and free stream values of velocity (U∞), density (ρ∞),
and viscosity (µ∞). Thus, the Reynolds number is de-
fined asRe= U∞L/ν∞. Pressure is normalized with

P = (P∗ + ρ∞gy∗ − P∞)/ρ∞U2
∞, whereP∗ is the lo-

cal dimensional static pressure. Following (Chorin,
1967), an artificial time derivative term (∂ρa/∂t, where
ρa = P/β) has been added to the continuity equation
to cast the complete set of governing equations into a
time-marching form. The nondimensionalized equa-
tions can be written in integral form as

∂
∂t

Z

Ω
QdV+

Z

∂Ω
~F ·~̂ndA=

1
Re

Z

∂Ω
~G ·~̂ndA (3)

where~̂n is the outward pointing unit normal to the
control volumeV. The vector of dependent variables
and the components of the inviscid and viscous flux
vectors are given as

Q =









P
u
v
w









(4)

F ·~̂n =









β(Θ−at)
uΘ + n̂xP
vΘ + n̂yP
wΘ + n̂zP









(5)

G ·~̂n =









0
n̂xτxx+ n̂yτxy+ n̂zτxz

n̂xτyx+ n̂yτyy+ n̂zτyz

n̂xτzx+ n̂yτzy+ n̂zτzz









(6)

whereβ is the artificial compressibility parameter (typ-
ically 15 in this work),u, v, andw are the Cartesian
velocity components in thex, y, andz directions, and
n̂x, n̂y, andn̂z are the components of the normalized
control volume face vector.Θ is the velocity normal
to a control volume face:

Θ = n̂xu+ n̂yv+ n̂zw+at (7)

where the grid speedat =−(Vxn̂x +Vyn̂y +Vzn̂z). The
control volume face velocity is given by~Vs = Vxî +
Vy ĵ +Vzk̂. The viscous stresses given in Equation (6)
are

τi j = (µ+µt)

(

∂ui

∂x j
+

∂u j

∂xi

)

(8)

whereµandµt are the molecular and eddy viscosities,
respectively.



Numerical Approach for Navier-Stokes Equa-
tions

The baseline flow solver is a node-centered, fi-
nite volume, implicit scheme applied to general un-
structured grids with nonsimplical elements, such as
prisms and pyramids. The flow variables are stored
at the vertices, and surface integrals are evaluated on
the median dual surrounding each of these vertices.
The nonoverlapping control volumes formed by the
median dual completely cover the domain, and form a
mesh that is dual to the elemental grid. Thus, a one-to-
one mapping exists between the edges of the original
grid and the faces of the control volumes. The solu-
tion algorithm consists of the following basic steps:
reconstruction of the solution states at the control vol-
ume faces, evaluation of the flux integrals for each
control volume, and the evolution of the solution in
each control volume in time.

Reconstruction
A higher order spatial method is constructed by

extrapolating the solution at the vertices to the faces
of the surrounding control volume. The unweighted
least squares method (solved via QR factorization (An-
derson, 1994)) is used to compute the gradients at the
vertices for the extrapolation, which is similar to a
central difference approximation to the gradient. With
these gradients known, the variables at the interface
are computed using the newly-developed Unstructured
MUSCL (U-MUSCL) scheme,

Qf = Qi +
χ
2

(Q j −Qi)+ (1−χ)∇Qi ·
~r
2

(9)

whereQf is the value at nodei side of the face be-
tween nodesi and j, χ is a parameter that works the
same as the parameter within the MUSCL-approach,
and~r is a vector that extends from nodei to node
j associated with the control volume face in ques-
tion. Whenχ = 0, the more common formulation for
the variable extrapolation within unstructured codes is
achieved. Whenχ = 1/2, the error of the extrapola-
tion at the face is minimized for uniform, one-dimen-
sional flow. In all of the simulations reported herein,
this parameter is set to 1/2. For many simulations,
this choice ofχ allows for a more stable simulation
which does not need any limiters, and produces a so-
lution whose residual has been converged to machine
zero.

Spatial Residual
The evaluation of the discrete residual is performed

separately for the inviscid and viscous terms given in
Equation (3). The Roe scheme (Roe, 1981) is used to
evaluate the inviscid fluxes at each face of the control

volumes. The algebraic flux vector is replaced by a
numerical flux function, which depends on the recon-
structed data on each side of the control volume face:

Φ =
1
2

(F(QL)+F(QR))− 1
2

Ã(QR−QL) (10)

whereÃ = R̃Λ̃R̃−1. The matrixR is constructed from
the right eigenvectors of the flux Jacobian, andΛ̃ is
a diagonal matrix whose entries contain the absolute
values of the eigenvalues of the flux Jacobian (Taylor,
1991). The matrixÃ is evaluated with Roe-averaged
variables, which is simply the arithmetic average be-
tween left and right solution states in the case of in-
compressible flows.

For general element grids, it is expedient to use
only edge-local information to compute the viscous
fluxes, which allows the evaluation of viscous fluxes
on each face of the control volume without regard to
the varying element types of the mesh. An algorithm
in which no element information is used outside of
metric computations is termed a “grid transparent” al-
gorithm (Haselbacher, 1999). To this end, the viscous
fluxes are evaluated directly at each edge midpoint us-
ing separate approximations for the normal and tan-
gential components of the gradient vector to construct
the velocity derivatives . Using a directional deriva-
tive along the edge to approximate the normal compo-
nent of the gradient and the average of the nodal gra-
dients to approximate the tangential component of the
gradient leads to the following expression (Hyams,
2000b):

∇Qi j ≈ ∇Q+
[

Q j −Qi −∇Q·~r
] ~r
|~r|2 (11)

where∇Q is the average of∇Qi and∇Q j . As stated
above, the weighted least squares method is used to
evaluate the nodal gradients in the preceding formula.

Solution Procedure
The temporal derivative is discretized so that ei-

ther a first or second-order time discretization is avail-
able. The resulting system of discretized governing
equations is solved via a bi-directional Gauss-Seidel
algorithm, which splits the matrix into a diagonal, up-
per triangular and lower triangular parts and using subit-
erations to converge the solution at each time step
(Hyams, 2000b) (Burg, 2002b).

Boundary Conditions
Three different boundary conditions are used with-

in the free surface simulations: viscous wall (i.e., no-
slip) boundary conditions, farfield boundary condi-
tions and free surface boundary conditions, each of



which are handled implicitly. Viscous conditions are
enforced by modifying the linear system such that no
change is allowed in the velocity, and the pressure is
driven according to the imbalance in the continuity
equation in the boundary control volume (Anderson,
1994). Farfield conditions are handled via a character-
istic variable reconstruction. The free surface bound-
ary conditions will be presented below - in essence, at
steady-state, the velocity is tangent to the free surface
(i.e.,~u · n̂f s = 0) and the pressure isP = Y

Fr2 , where
Y is the elevation of the free surface above the undis-
turbed waterline and the Froude number isFr = U∞√

gL
.

Turbulence Modeling
Both the one-equation turbulence model of Spalart

and Allmaras (Spalart, etal, 1992) and theq−ω (Coak-
ley, 1985), thek− ε and thek−ω two-equation tur-
bulence models are available within the solver. Con-
stants are taken from the version IIq−ω model given
in (Coakley, 1985). Thek− ε andk−ω turbulence
models have been newly incorporated within the un-
structured flow solver. For the simulations presented
herein, the one-equation turbulence model of Spalart-
Allmaras is used.

The diffusive terms in both turbulence models are
discretized in the same manner as the viscous terms
for the mean flow, and the convective terms are com-
puted via pure upwinding. Appropriate consideration
is given to maintain positive operators in the forma-
tion of the Jacobian matrix for the implicit solution
of the transport equation(s). The respective turbu-
lence models are incorporated with the mean flow so-
lution in a “loosely-coupled” procedure; that is, the
core governing equations are solved first, then the tur-
bulence model is solved independently. This proce-
dure allows for easy interchange of the turbulence mod-
els.

NONLINEAR FREE SURFACE ALGORITHM
A nonlinear free surface is obtained for a steady-

state simulation by solving the kinematic free surface
boundary condition at each time level and imposing
the hydrostatic pressure distribution based on the new
free surface elevation onto the free surface boundary
within the mean flow. After several time steps, typi-
cally on the order of 500, the grid is moved to match
the free surface elevations while conforming to the
surfaces that intersect the free surface, such as the
hull of a ship or the sail of a submarine; and as the
loosely coupled interaction between the free surface,
the Navier-Stokes equations and the grid movement
algorithm converges, the solution approaches the non-
linear free surface solution.

Governing Equations
In deriving the kinematic free surface boundary

condition, the free surfaceη(x,y,z,t) = 0 is consid-
ered as a material surface (i.e., no flow travels through
the surface), so

Dη
Dt

= 0 (12)

or

∂η
∂t

+(u−Vx)
∂η
∂x

+(v−Vy)
∂η
∂y

+(w−Vz)
∂η
∂z

= 0

(13)
By making the assumption that the free surfaceη can
be expressed asη(x,y,z,t) = y−Y(x,z,t) = 0, this
equation reduces to

∂Y
∂t

+(u−Vx)
∂Y
∂x

− (v−Vy)+ (w−Vz)
∂Y
∂z

= 0 (14)

At steady-state, the kinematic boundary condition be-
comes

(~u+at) ·
(

∂Y
∂x

,−1,
∂Y
∂z

)

= 0

(~u+at) ·αn̂f s = 0
(15)

whereα =

√

1+
(

∂Y
∂x

)2
+

(

∂Y
∂z

)2
, so the flow is tan-

gent to the free surface at steady-state.
The pressure in the numerical simulation at the

free surface is set based on the free surface elevation.
For the original, dimensional equations, the pressure
at the free surface is the atmospheric pressureP∞. Us-
ing the nondimensionalization,P= P∗+ρ∞gy∗−P∞

ρ∞U2
∞

with

P∗ = P∞ and y∗
L = Y, the pressure is clearly set to

P = Y
Fr2 , where the Froude number isU∞√

gL.

Numerical Approach for Free Surface
The kinematic equation for the linear free surface

is solved via a Galerkin finite element approach. In
this approach, an algebraic equation is obtained for
each nodej by multiplying the governing equation by
a weight functionϕ j(x,z), approximating the terms in
the governing equation by using linear and bilinear in-
terpolating functionsφi(x,z) and integrating over the
computational domain, or

Z

Ω
ϕ j(x,z)

(

∂Ỹ
∂t

+
(

ũ− Ṽx
) ∂Ỹ

∂x
−

(

ṽ− Ṽy
)

+
(

w̃− Ṽz
) ∂Ỹ

∂z

)

= 0

(16)



where the interpolated free surface elevation isỸ(x,z)=

∑i Yiφi(x,z) and the velocities are of the form ˜u(x,z) =

∑i uiφi(x,z).
For the triangular elements, the resulting equa-

tions are integrated using 7 point Gauss quadrature,
and for the quadrilateral elements, the integrals are
solved using 6 point Gauss quadrature in both direc-
tions. A first-order backward time discretization of
Equation (16) is used for the temporal derivative, where
∂Ỹ
∂t = Ỹn+1−Ỹn

∆t and the spatial terms evaluated at time
level n+ 1. This discretization results in a linear al-
gebraic system of the formℜ f s(Yn+1,Yn) = 0. Since
these equations are linear in the unknown variableYn+1

i
at each time level (i.e., the velocities are frozen), the
Jacobian matrix is calculated only once per time level.
A Gauss-Seidel iterative solver similar to the one used
to solve the discretized Navier-Stokes equations is used
to identify the solution of the kinematic free surface
equation by solving

[

∂ℜ f s

∂Yn+1

]

∆yn+1,m = −ℜ f s(Y
n+1,m,Yn) (17)

whereYn+1,m+1 =Yn+1,m+∆yn+1,m andYn+1 =Yn+1,m+1

when‖∆yn+1,m‖ < tolerance.
Within the viscous boundary layer, special care is

needed in solving the kinematic free surface equation.
On viscous surfaces, the flow velocity plus the grid
velocity (i.e.,~u+ at) is set to zero, which prevents
the free surface from moving at the viscous surface.
Physically, however, surface tension effects force the
free surface to rise and fall along the viscous surfaces.
Since the solver does not simulate surface tension, an-
other method must be employed to move the free sur-
face near the viscous surfaces. Following the method
used in the structured solver, the free surface at a cer-
tain distance from the viscous surface is extended at a
constant height to the viscous surface. This distance
is typically on the order of 2×10−4 times the charac-
teristic lengthL, whereas the point spacing off of the
viscous surface is on the order 10−6 for model scale
simulations and 10−8 for full scale simulations.

Free Surface Boundary Condition
At the free surface boundary, the pressure is set to

the hydrostatic pressure ofP = Y
Fr2 . Determining the

velocity to impose on the boundary is more difficult.
If the velocity were forced to be tangent to the free
surface (i.e.,(~u+at) · n̂f s = 0), then the free surface
equation would reduce to∂Y

∂t = 0, and the free surface
could not evolve. Thus, this tangency condition is re-
laxed to allow the free surface to evolve.

This boundary condition is implemented using a
characteristic variable boundary condition, similar to

the derivation used for the farfield boundary condi-
tion. For hyperbolic systems, flow information travels
along characteristics; and for three-dimensional in-
compressible flow, three characteristics originate up-
stream, and one originates downstream. If the flow is
traveling out of the domain (i.e,(~u+at) · n̂ > 0), then
only one characteristic needs to be specified from the
outside, which is derived from the hydrostatic pres-
sure. If the flow is traveling into the domain, three
characteristics need to be specified from the outside.
The characteristic variables are derived from consid-
ering the inviscid fluxes across the the boundary face,
via

∂Q
∂t

+ ∇F ·~̂n = 0 (18)

where~̂n is the normal to the grid for each boundary
face. The inviscid flux term can be rewritten as

∇F =
∂F
∂Q

∇Q = RΛR−1∇Q (19)

whereΛ is a diagonal matrix with the eigenvaluesΘ,
Θ, Θ + c andΘ− c, whereΘ = un̂x + vn̂y + wn̂z+ at

andc =

√

(

Θ− at
2

)2
+ β. Premultiplying byR−1,

R−1 ∂Q
∂t

+ ΛR−1∇Q ·~̂n = 0 (20)

Freezing the matrixR−1
o = R−1(Qin),

∂R−1
o Q
∂t

+ Λ∇
(

R−1
o Q

)

·~̂n = 0 (21)

Using the definitionW(Q) = R−1
o Q, Equation (18) de-

couples into four equations for the four characteristic
variablesW as

∂W
∂t

+ Λ∇W ·~̂n = 0 (22)

Three of the characteristics are obtained from upstream
values, and one of the characteristics is obtained from
downstream values. In the case of a boundary face,
there are a set of characteristics associated with the
inside flowWin(Qin) and a set of characteristics as-
sociated with the outside flowWout(Qout). The flow
variables on the boundary face are determined from
the appropriate characteristic variables viaQ = RoW.
For flow traveling out of the domain, the characteristic



variables are chosen to be

W =









win
1

win
2

win
3

wout
4









(23)

because the fourth eigenvalueΘ−c is negative, while
the other eigenvalues are positive. For flow traveling
into the domain, only the third eigenvalue is positive,
so the characteristic variables are chosen as

W =









wout
1

wout
2

win
3

wout
4









(24)

For farfield boundary conditions, the characteristic vari-
ables associated with the outside flow are taken as
the freestream variables. For free surface boundary
conditions, the characteristic variables for the outside
flow are determined from the hydrostatic pressure and
the only available velocity information, which is the
velocity on the inside. However, this velocity is mod-
ified by removing a portion of the velocity component
that is not tangent to the grid, via

~uout =~u− γ((~u+at) · n̂) n̂ (25)

where

γ =

{

−(~u+at) · n̂ if −1≤ (~u+at) · n̂ < 0

1 if (~u+at) · n̂ < −1
(26)

Whenγ is 1, the velocity imposed from the outside is
tangent to the grid (i.e.,~uout · n̂ = 0). When the ve-
locity was not modified or constrained in some fash-
ion, the free surface algorithm became unstable for
flow into the domain due to the inconsistency of us-
ing downstream information. This instability was a
severe difficulty for the transom stern of Model 5415,
but was not a difficulty for previous cases such as the
Wigley Hull and Series 60. This modification pro-
vides enough control over the velocity to maintain sta-
bility of the algorithm, and if the grid is allowed to
move to match the free surface, then this modification
ensures that the flow will be tangent to the free surface
at convergence. When using the grid speed termsat ,
such as for the constant turning case, the grid speed
terms are not restricted via equation (25), only the ve-
locity ~uout is restricted.

Grid Movement Algorithm
After several time steps, the grid is moved to match

the free surface while conforming to any solid sur-

faces intersecting the free surface, with displacements
on the surface being propagated into the volume grid.
Several methods are available for this grid movement,
including the use of a Laplacian solver to propagate
the surface perturbations into the volume grid, the use
of a linear spring analogy where each edge is a spring
whose stiffness is determined by the length of the edge,
a torsional/linear spring analogy (Farhat, 1998) where
the angle between the edges affects the stiffness of
the springs in the mesh, or solving the linear elas-
ticity equations to propagate the perturbations within
the grid. The spring analogy is computationally effi-
cient but is not robust. Both the spring analogy and
the Laplacian solver generate elements with negative
volumes for moderate amounts of movement, on the
order of the size of 3 to 4 elements. Solving the linear
elasticity equations to move the grid is robust, but the
computational cost associated with this method is the
primary drawback.

Thus, following the work of Farhat and extend-
ing it to three dimensional grids, the torsional/linear
spring analogy has been developed and applied to the
problem of moving the grid to match the linear free
surface elevations. For tetrahedral grids, this method
is quite robust, allowing severe distortions on the sur-
face while maintaining positive volume elements. In
practice, this algorithm allows up to approximately
80% compression of elements. Within the boundary
layer, (i.e., near the viscous surfaces), the grid moves
the same as the points on the boundary. This grid
movement method is computationally costly but pro-
vides excellent robustness for the free surface solver.

The linear spring method for moving an unstruc-
tured grid is presented in (Batina, 1989) where each
edge in the grid is replaced by a linear spring whose
stiffness is inversely proportional to the length of the
edge. Unfortunately, this method often fails for com-
plicated geometries and for large changes in the bound-
ary, because negative areas are generated when a node
crosses over an edge in the grid. The creation of neg-
ative areas is illustrated in Figure 1, where node 1 is
pushed downwards and node 4 is forced to cross the
edge between nodes 2 and 3.

4

1

1

1

4

4

2 3 2 3 2 3

Figure 1. Negative Areas Produced by Linear Spring
Method.

The reason for this failure is that the stiffness in the
linear spring method prevents two nodes from collid-
ing but does not prevent a node from crossing over an



edge. As two nodes get closer together, the stiffness
increases without bound preventing the collision; but
there is no mechanism to prevent a node from crossing
an edge, because these crossovers can occur without
the stiffness increasing without bound.

To provide a more robust movement algorithm
for unstructured grid, Farhat developed an algorithm
to prevent a node from crossing an edge by using tor-
sional springs around each node, as shown in Figure
2.

θ i
ijk

Torsional Spring
Linear Spring

Linear Spring

k

ji

Figure 2. Placement of Linear and Torsion Springs.

The stiffness of the torsion springCi jk is inversely
proportional to the sine of the angle, so that the stiff-
ness grows without bound as the angle decreases to-
wards zero or increases towards 180o, or

Ci jk =
1

sin2 θi jk
i

(27)

whereθi jk
i is the angle centered at nodei formed from

the edgesi j and ik. Thus, as a node moves towards
an edge, the angle goes towards zero, and the stiff-
ness of the torsion spring grows. The sine of the an-
gle is squared to prevent a negative stiffness. In addi-
tion, multiplying the stiffness by term that is inversely
proportional to the distance to the viscous surfaces
(Murayama, 2002) further improves robustness and is
used here as well.

Farhat has derived the equations for the torsional
spring methods for two-dimensional grids and pro-
vides an iterative solution method. In the present work,
these methods have been extended into three dimen-
sions, which provides an adequate level of robustness
for the grid movement algorithm. The derivations of
the three-dimensional torsional spring equations are
beyond the scope of this paper and will be presented
elsewhere.

The grid movement algorithm is implemented via
several steps, with the goal of moving the grid to match
the free surface while conforming to any geometry
that intersects the free surface, such as a hull. These
steps are described below:

1. Move nodes along surface to surface edges. There
are several different types of edges, depending
on each surface’s relationship to the free surface.
The nodal locations are determined based on the
type of edge. For instance, an edge that lies fully
within the free surface has its y-component de-
termined by the free surface value, but its x and
z-components are determined by the surface’s re-
lationship to the free surface. If the surface is pro-
jected in the z-direction, then the z-component is
determined by this projection, while its x-compo-
nent is determined by any stretching at the end-
points. When this process is attempted across
several processor blocks, moving nodes in the edges
becomes quite complicated.

2. Move nodes in the surface. Based on the dis-
placements at the edges of each surface, the nodes
in the surface are moved via torsional springs.
Before this is attempted, however, the nodes must
be projected onto a planar surface, requiring that
each surface be “projectible”, such that the sur-
face can be uniquely projected onto a plane in
some constant direction.

3. Once the nodes are moved in the projected sur-
face, they must be projected onto a background
surface representing the geometry. This back-
ground surface is significantly more resolved than
the grid, and this background surface must extend
above the original waterline, so as to allow for
motion of the free surface above the waterline.

4. Move surface displacements into the prismatic,
boundary layer grid, along boundary layer lines
originating at each node in the viscous surface.

5. Move nodes in the volume based on surface dis-
placements in all coordinate directions

EXAMPLES
These examples demonstrate the changes in the

free surface profiles and the forces on the hull for
changes in the grid resolution as well as for changes
in incoming flow angles and for changes in the turn-
ing radius. The results from the grid refinement study
indicate that the general features of the flow are ob-
tained for each grid, but that the level of grid refine-
ment has not reached the “grid independent” level,
in that changes in grid refinement generates a notice-
able change in the free surface from one grid to the
next. Furthermore, the vortical structures under the
hull change even more dramatically from one grid to
the next, which is beyond the scope of this report.

These simulations were completed on an in-house
LINUX cluster consisting of 1,024 processors, which
consists of 1.0 GHz and 1.266 GHz Pentium III pro-
cessors, with approximately 1.0 Gigabytes of RAM
for each pair of processors. The grids are partitioned



such that approximately 100,000 nodes are in each
partition. Hence, the largest grid is partitioned into
50 pieces to run on 50 processors.

Much of the work in this paper is based on lessons
learned from simulations completed through the De-
partment of Defense High Performance Computing
(HPC) Challenge Project, including computational time
on the IBM-SP3 at the Naval Oceanographic Office
MSRC, the IBM-SP3 at the Maui High Performance
Computing Center and the Cray T3E at U. S. Army
Engineer Research and Development Center MSRC
(Kim,2003)

Grid Refinement Study
The free surface flow around the DTMB Model

5415 Series hullform was simulated for six viscous
grids with different point spacings, in order to deter-
mine the appropriate level of grid refinement for ac-
curate free surface simulations and force and moment
predictions. No attempt was made in the grid refine-
ment study to insure that the grids were geometrically
similar, in that control volumes were consistently di-
vided from grid level to the next. In each grid level,
the overall grid spacing was reduced by a factor of 0.8.
By reducing the point spacing at the controlling points
within the geometry, the point spacing on the surfaces
and within the volume were also reduced by a simi-
lar amount. In addition, the point spacing in the stern
region and along the hull behind the bow wave were
further reduced, because of the sensitivity of these re-
gions to changes in the point spacings. The size of
each grid is shown in Table 1. The prisms are gen-
erated off of the viscous surfaces, which consist of
triangular faces. The point spacing off of the viscous
surfaces is selected to produce ay+ of approximately
1 on the viscous surfaces. The stack of prisms origi-
nating from each triangular face terminates when the
aspect ratio of the prisms is approximately 1.0, so as
the grid on the viscous surface is refined, the thick-
ness of the prismatic region within the volume grid
decreases. The effects of this boundary layer growth
are outside the scope of this paper.

Grid Level Nodes Tetrahedra Prisms

Viscous 1 477 K 891 K 603 K
Viscous 2 789 K 1,356 K 1,049 K
Viscous 3 1,184 K 2,383 K 1,459 K
Viscous 4 1,878 K 3,734 K 2,333 K
Viscous 5 2,563 K 6,377 K 2,759 K
Viscous 6 4,114 K 11,282 K 4,082 K

Table 1. Grid Sizes for Grid Refinement Study.

The force in the x-direction (i.e., drag) for each
grid are tabulated below and are divided into three dif-
ferent parts, the force based on the dynamic pressure
(Dyn. P), the force based on the hydrostatic pressure

(Hydro. P) and the viscous force (Visc. Drag). The
hydrostatic pressure force is defined herein as the sur-
face integral of the vertical locationy divided by the
square of the Froude number dotted into the normal
direction, over the viscous surface∂Ω, or

Z

∂Ω
yn̂dS (28)

The hydrostatic pressure force is similar to the pres-
sure attributable to the weight of the water on the sur-
face. For fully-submerged objects, such as a subma-
rine, this integral is equivalent to the weight of the
displaced fluid and points in the downward direction.
However, for surface vessels, the free surface may
cause a non-zero component in the other directions,
as well.

The viscous component is the primary influence
in the drag, but the hydrostatic pressure contribution
represents approximately 10% of the drag, which are
shown in Table 2. In order to predict this component,
the free surface must be simulated. Furthermore, the
free surface simulation also directly affects the dy-
namic pressure by changing the amount of the wet-
ted surface area over which the dynamic pressure acts,
and by changing the pressure distribution on these sur-
faces. The effects of the free surface on the viscous ef-
fects is much more subtle, especially in understanding
how the free surface interacts with the vortical struc-
tures, changing their strength and location. The vis-
cous drag drops slightly as the grid is refined, while
the hydrostatic pressure contribution stays almost con-
stant as would be expected since it only depends on
the free surface profile at the hull. The dynamic pres-
sure changes more, which is probably a result of changes
of the free surface in the stern. These results are com-
pared with the experimental results as published in the
Gothenburg 2000 Proceedings.

Grid Dyn. P Hydro. P Visc. Drag Total

1 2.160 0.887 4.214 7.261
2 1.889 0.812 4.105 6.806
3 1.643 0.816 4.088 6.547
4 2.222 0.850 3.820 6.892
5 2.340 0.810 4.028 7.178
6 2.520 0.882 3.824 7.226

Exp. 1.36 na 4.93 6.29

Table 2. Force in x-Direction (i.e., drag)×104.

The free surface for this sequence of grids is shown
in Figures 3 and 4, which highlight the bow wave peak
and trough and the stern. The height of the bow wave
is approximately the same for each grid, although it
does vary within a banded range, similar to the error
bars for the experimental solution. The profile in the



bow trough also varies from one grid to the next, in-
dicating that the grids are not in the “grid asymptotic”
range, where changes in the grid do not change the re-
sult significantly. In the bow region, the free surface
is reasonably symmetric, since the port and starboard
sides are almost indistinguishable.
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Figure 3. Comparison of Free Surface Profiles Along
Port Side.

But in the stern, the free surface is not symmet-
ric, even though every effort has been made to insure
symmetry. The reason for this asymmetry is the in-
teraction between the free surface, the grid movement
algorithm and the turbulence effects. Slight asymme-
tries in the free surface cause the free surface grid to
become asymmetric once the grid is moved to match
the free surface. This asymmetry in the grid causes
the free surface to become more asymmetric, which
begins to affect the vortical structures underneath the
ship. Once these asymmetries exist in the vortical
structures, the free surface is completely altered, align-
ing with the vortical structures. Returning the free
surface to a symmetric flow state after this asymme-
try has set up is quite challenging. Also, in the stern
profile, the elevations for the first three grids is sig-
nificantly higher than for the last three grids. As can
be seen from the roughness of the curve, the resolu-
tion in the stern region for the first three grids is not
enough to capture the flow features. For the last three
grids, much effort has been made to ensure that the
grid along the free surface is symmetric, which affects
the wave elevations. These simulations have not yet
converged, due to asymmetries in the vortical struc-
tures. The drag is very sensitive to the free surface
profile in the stern region, and since the free surface
in the stern is not yet converged, the forces fluctuate
greatly.
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Figure 4. Comparison of Free Surface Profiles Along
Stern.

In Figure 5, the vortical structure underneath the
Model 5415 and the free surface contours showing the
bow and stern waves are shown. These results are
from the most refined grid, Grid 6. The vortex shed
from the bulbous bow can be clearly seen for much of
the length of the hull. In the stern, the vortical struc-
ture is quite complicated and is not symmetric, which
adversely affects the symmetry of the free surface. As
stated above, the interaction between the free surface,
the grid movement algorithm and the vortical struc-
tures is quite complicated and prevents truly symmet-
ric flow. The free surface contours show that the stern
wave and the bow wave continue downstream of their
originations.

Figure 5. Free Surface Contours and Vortical
Structure for Grid 6.

Angles of Drifts
Two different steady-state maneuvers were simu-

lated for the DTMB Model 5415 series hullform. The



first maneuver was flow coming at the hull at differ-
ent angles of yaw, simulating the effects of the ship
drifting into the flow. The sink and trim were dif-
ferent for these simulations and hence the forces will
not agree with those listed above. For this simulation,
the grid was a symmetric grid, consisting of 4.8 mil-
lion nodes, with 4.6 million prisms and 14.1 million
tetrahedra, which is more resolved that Grid 6 in the
refinement study. The goal of these simulations was
to determine whether the free surface algorithm, and
especially the grid movement algorithm, could satis-
factorily capture the free surface in the bow and stern
regions. In the bow region, the bow wave grows to
an excessive height, whereas in the stern region, the
free surface is quite complicated. Six different an-
gles of drift were simulated, from 0 degrees to 5 de-
grees of yaw. As the angle of drift increases, the
side force grows dramatically. At 0 degree angle of
drift, the flow should be symmetric, so that the side
force should be zero. Special effort has been made to
enforce symmetry for the 0 degree case, which ad-
versely affected the dynamic pressure for the drag,
and even with this special effort, symmetric flow has
not quite been achieved. The forces in the x-direction
(i.e., drag) and in the z-direction (i.e., side-force) are
shown in Tables 3 and 4. The change in the forces
in Table 3, especially the viscous drag which comes
from the skin friction, varies monotonically with a
change in the angle. The slight drop in the dynamic
pressure for Angle 4 may be a result of an under con-
verged solution.

Angle Dyn. P Hydro. P Visc. Drag Total

0 2.252 0.821 4.406 7.479
1 2.742 0.907 4.423 8.072
2 2.811 0.956 4.440 8.207
3 2.876 1.045 4.462 8.383
4 2.823 1.172 4.479 8.474
5 3.122 1.335 4.507 8.964

Table 3. Force in x-Direction (i.e., drag).

The contributions to the side force are primarily
from the difference in the dynamic pressure and hy-
drostatic pressure on the starboard and port sides of
the hull caused by the flow approaching the ship at
an angle. These forces scale linearly with the angle
for the smaller angles and then they grow faster than
linearly as the angle increases. As the flow angle in-
creases, the ship’s silhouette changes and the flow fea-
tures change. For small angles, this change can be
represented by a perturbation from flow at a 0 degree
angle of yaw, but for larger angles, the flow patterns
are significantly different, resulting in greater forces.

Angle Dyn. P Hydro. P Vis. Drag Total

0 0.062 0.006 0.007 0075
1 2.382 0.757 0.033 3.172
2 4.832 1.527 0.075 6.434
3 7.272 2.334 0.133 9.739
4 9.891 3.162 0.167 13.220
5 12.934 4.079 0.199 17.212

Table 4. Force in z-Direction (i.e., Side-Force).

The free surface along the hull is shown in the fol-
lowing figures along the port (Figure 7) and starboard
side (Figure 8) and along the stern (Figure 9). The
flow is approaching from the starboard side, which re-
sults in highly bow waves on the starboard side. The
change in the free surface profiles for the bow wave
are almost linear on both the port and starboard sides,
not only at the bow but also along the entire length of
the ship. The deflections in the stern are also as ex-
pected, showing a gradual change from the symmet-
ric flow. The image for the stern region shows results
from a previous simulation, which is more converged
than the solution on the current grid, but used a dif-
ferent version of the free surface algorithm. For these
simulations, the free surface algorithm and the grid
movement algorithm are adequate for the free surface
distortions.
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Figure 7. Free Surface Profiles Along Port Side.
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Figure 8. Free Surface Profiles Along Starboard Side.
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Figure 9. Free Surface Profiles Along Stern.

Finally, the vortex originating from the bulbous
bow is shown in Figure 10, as well as the free surface
contours for the bow wave and the stern wave. This
image is for the case of the 5 degree turn.

Figure 10. Free Surface Contours and Vortical
Structure for Angle 5.

Constant Turning Radius

The second steady-state maneuvering case involved
simulating the flow around the DTMB Model 5415 se-
ries hullform in a constant turn, with turning radii of 6,
12 and 24 times the hull length. For the tightest case,
involving the turn of radius 6 times the hull length,
the flow at the bow has an angle of approximately 5
degrees with the axis of the ship. For this simulation,
the grid speed terms are non-zero while the farfield
conditions are set to zero, so different aspects of the
code are tested. The grid used for this simulation had
a similar number of nodes as Grid 4 in the grid refine-
ment study, but it differed in the placement of these
points.

Radius Dyn. P Hydro. P Visc. Drag Total

24 L 2.481 1.057 4.135 7.673
12 L 2.581 1.113 4.146 7.84
6 L 2.951 1.452 4.220 8.623

Table 5. Force in x-Direction (i.e., drag).

The forces generated by these simulations are given
in Table 5 and 6, showing the force in the x-direction,
which is akin to drag, and the force in the z-direction,
which is the side force. For the force in the x-direction,
the viscous drag varies only slightly as the turning
radius gets tighter, but the dynamic and hydrostatic
pressure contributions increase as the turning radius
decreases, indicating that the ship experiences greater
drag through a tighter turn. The two pressure contri-
butions to the side force approximately double as the
turning radius halves, and the viscous force contribu-
tion to the side force is minimal.

Radius Dyn. P Hydro. P Visc. Total

24 L -2.249 -1.113 0.002 3.360
12 L -4.482 -2.234 0.016 6.700
6 L -9.457 -4.703 0.035 -14.125

Table 5. Force in z-Direction (i.e., Side-Force).

The free surface profile along the port and star-
board sides are shown in Figure 11. As would be
expected, the free surface rises on the starboard side,
which is the side turning into the flow and drops on
the port side. As was the case with the angles of drift,
the free surface profiles vary continuously with the
change in the radius of the turn.
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Figure 11. Free Surface Profiles along Port and
Starboard.

Finally, the vortical structure and the free surface
contours are shown in Figure 12. The vortical struc-
ture arising from the bulbous bow is quite strong and
continues far downstream of the bow as it curves with
the rotation of the ship. There is a strong vortex that
originates at one corner of the stern and curves in re-
sponse to the rise and fall of the free surface. The free
surface also curves with the rotation of the ship.

Figure 12. Free Surface Contours and Vortical
Structure for Radius 6 L Turn.

Prescribed Linear Free Surface Maneuver
For the final case, the Model 5415 hullform is

forced through a prescribed maneuver to study the
free surface through a maneuver. The data for the
maneuver was generated by using a rudder-induced,
propulsor-driven3 DOF maneuver for the Model 5415
without a free surface. In this simulation, the free
surface was simulated as a symmetry plane, so that
the free surface effects could be ignored. A fully-
appended geometry of the Model 5415 was used, with
the propulsors rotating to power the ship and with the
rudders deflecting through the turn. The time step

was 0.0002068 seconds per iteration, with each itera-
tion taking approximately 60 seconds, and there were
3230 iterations in the maneuver. The ship turns to
approximately 8 degrees from the original angle and
reaches an angle with the incoming flow direction of
slightly more than 6 degrees.

For the simulation presented herein, a steady-state
simulation is performed with the ship traveling straight
and level before the maneuver begins. This simulation
does not have the rudders, propulsors or appendages,
but the free surface is activated. The grid is not moved
through the maneuver due to the computational cost
and the probable instabilities associated with moving
the grid frequently, but the grid at the beginning of
the simulation is moved to match the steady-state free
surface for the incoming flow.

For the case of the constant angles of drift, the
simulation was performed by changing the flow di-
rection at the farfield boundaries, hence imposing the
angle of drift into the simulation. For the case of
constant turning radii, a different aspect of the code
was used, which involved the grid speed termsat =
−(Vxn̂x +Vyn̂y +Vzn̂z) while setting the farfield ve-
locities to zero. These grid speed terms were con-
stant throughout the simulation. For the case of the
prescribed maneuver, the grid speed terms again were
enabled, but they varied through the simulation as the
ship performed its maneuver. Hence, this test case ex-
ercised a different portion of the code.
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Figure 13. Free Surface along Hull for Maneuver.

One of the goals of this simulation was to deter-
mine how high the free surface would be along the
hull. In Figure 13, the free surface along the hull be-
fore the maneuver and after the maneuver is shown.
The free surface on the starboard side rises dramati-
cally as the ship turns to starboard, while the free sur-
face on the port drops off quite dramatically. Further-
more, the free surface profile along the ship’s hull is



quite different, inducing a significant force imbalance
from the starboard to the port side. And even though
the ship reaches only an angle of only slightly more
than 6 degrees with the incoming flow, the free sur-
face rises to a height significantly higher than for the
5 degree drift case or the case with the tightest turning
radius. For this case, the grid was fixed and was not al-
lowed to conform to the free surface. If the grid were
moved, then the free surface would probably become
even more extreme, and may approach the limit of the
grid movement algorithm to match the free surface.

Figure 14. Free Surface Contours Before Maneuver.

The primary goal of this simulation, beyond determin-
ing whether the free surface elevations would grow
too large for the grid movement algorithm, was to see
whether the free surface would respond properly as
the grid was rotated to match the ship’s maneuver. In
this maneuver, the entire grid was rotated and trans-
lated with the ship, as it moved. However, the free
surface behind the ship should not rotate with the ship
or the grid because it should not feel the effects of the
rotation, but rather, the free surface should stay rela-
tively fixed in relation to the original location of the
ship. In other words, once the wave has left the ship,
the behavior of the ship should not affect the wave.
The free surfaces at the beginning and the end of the
maneuver are shown in Figures 14 and 15, respec-
tively. The free surface in Figure 14 is nearly symmet-
ric about the centerline, but it does have some level of
asymmetry, as discussed above. In Figure 15, the free
surface aft of the ship again has some asymmetries,
due to the asymmetries in the original free surface,
but the free surface has not rotated with the ship or
the grid, but remains in its original orientation.

Figure 15. Free Surface Contours Before Maneuver.

CONCLUSIONS
A robust nonlinear free surface algorithm has been

implemented within an unstructured finite volume flow
solver of the the turbulent three-dimensional Reynolds-
averaged Navier-Stokes equations. The free surface
algorithm is a surface tracking algorithm which moves
the grid to match the free surface while conforming to
the hull and is loosely coupled to the flow solver via a
characteristic variable boundary condition imposition
of the free surface pressure distribution. This bound-
ary condition implementation also enforces flow tan-
gency along the free surface at convergence. Current
simulations also indicate that the free surface algo-
rithm is applicable to rotating and translating grids.

Results from a grid refinement study for the DTMB
Model 5415 barehull form are provided which indi-
cate that even more resolution is needed for a grid in-
dependent solution to be obtained. A discussion of the
hydrostatic pressure force is provided which is an ad-
ditional force not observed for fully-submerged sim-
ulations such as for a submerged submarine or for an
aircraft in flight.

Several initial simulations progressing towards a
true 6-degree-of-freedom(6-DOF) rudder-induced, pro-
peller-driven maneuver in unsteady seas were com-
pleted, including various angles of drift up to 5 de-
grees and constant turns of various turning radius, with
turns into the flow of up to 5 degrees, and one pre-
scribed maneuver. The goal of these simulations was
to determine whether the free surface algorithm could
model such moderate maneuvers, in that the free sur-
face would stay attached to the stern and that the grid
movement algorithm could move the grid for such ex-
treme grid motions, especially in the bow region. For
the angle of drift and the constant turn cases, the free
surface profiles gradually change over the spectrum
of runs, as do the force predictions. In addition, the
vortical structures respond to the changes in the flow
conditions as expected. For the prescribed maneuver,



with fixed grid, the free surface contours that are aft
of the ship do not rotate as the ship turns, which is
physically realistic, and the vortical structures again
behave appropriately.

These successful steady-state and linear free sur-
face maneuvering simulations indicate that this ap-
proach to modeling the free surface can be useful for
fully-appended, powered and self-directed 6-DOF ma-
neuvers. Previous work has shown that the grid gener-
ation algorithm and the flow solver along with the free
surface can build grids and simulate flow for fully-
appended cases with rotating propulsors and at both
model and full-scale Reynolds numbers. Continued
research is needed to analyze, implement and test a
fully-unsteady nonlinear free surface boundary con-
dition implementation as well as to improve the com-
putational efficiency of the grid movement algorithm
so that the grid can be moved more frequently. Stud-
ies of the impact of moving the grid at each time step
are also needed. Finally, a better understanding of the
choice of turbulence model is needed, with the hopes
that changing the turbulence model will improve the
force predictions.
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