
Math 3331 - Ordinary Differential Equations
Sample Test 3 Solutions

1. Solve the following

(i) x2y′′ − 5xy′ + 8y = 0, y(2) = 32, y′(2) = 0,

(ii) x2y′′ + 5xy′ + 4y = 0, y(1) = 2, y′(1) = 1,

(iii) x2y′′ − 3xy′ + 5y = 0, y(1) = 2, y′(1) = 5.

(i) The characteristic equation is

m(m− 1)− 5m + 8 = 0,

m2 − 6m + 8 = 0,

(m− 2)(m− 4) = 0 ⇒ m = 2, 4.

The solution is
y = c1x2 + c2x4.

With the boundary conditions y(2) = 32 and y′(2) = 0 gives c1 = 16 and c2 = −2. Thus,
the solution is

y = 16x2 − 2x4.

(ii) The characteristic equation is

m(m− 1) + 5m + 4 = 0,

m2 + 4m + 4 = 0,

(m + 2)2 = 0 ⇒ m = −2,−2.

The solution is
y =

c1

x2 +
c2 ln x

x2 .

With the boundary conditions y(1) = 2 and y′(1) = 1 gives c1 = 1 and c2 = 3. Thus, the
solution is

y =
1
x2 +

3 ln x
x2 .

(iii) The characteristic equation is

m(m− 1)− 3m + 5 = 0,

m2 − 4m + 5 = 0, ⇒ m = 2± i.

The solution is
y = c1x2 sin(ln x) + c2x2 cos(ln x).
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With the boundary conditions y(1) = 2 and y′(1) = 5 gives c1 = 1 and c2 = 2. Thus, the
solution is

y = x2 sin(ln x) + 2x2 cos(ln x).

2. Solve the following using the variation of parameters

(i) y′′ + y = tan x,

(ii) y′′ + 3y′ + 2y =
1

ex + 1
, y(0) = 2, y′(0) = 1.

(i) The complementary equation is

y′′ + y = 0,

whose solution is
y = c1 sin x + c2 cosx.

For the variation of parameters we replace c1 and c2 with u and v. Thus

y = u sin x + v cosx, (1.1)

so
y′ = u′ sin x + u cos x + v′ cos x− v sin x,

where we set
u′ sin x + v′ cos x = 0. (1.2)

Therefore
y′ = u cos x− v sin x,

and
y′′ = u′ cos x− u sin x− v′ sin x− v cos x.

Substituting into the original equation gives

u′ cos x −»»»»u sin x− v′ sin x−((((v cos x

−»»»»u sin x −((((v cos x = tan x (1.3)

Solving (1.2) and (1.3) for u′ and v′ gives

u′ = sin x, v′ = −sin2 x
cos x

.

which, upon integrating gives

u = − cos x, v = sin x− ln | sec x + tan x |.

Substituting these into (1.1) gives
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y = − cos x ln | sec x + tan x |,
which in turn gives the solution

y = c1 sin x + c2 cos x− cos x ln | sec x + tan x |,

(ii) The complementary equation is

y′′ + 3y′ + 2y = 0,

whose solution is
y = c1e−x + c2e−2x.

For the variation of parameters we replace c1 and c2 with u and v. Thus

y = ue−x + ve−2x, (1.4)

so
y′ = u′e−x − ue−x + v′e−2x − 2ve−2x,

where we set
u′e−x + v′e−2x = 0, (1.5)

so
y′ = −ue−x − 2ve−2x.

Then
y′′ = −u′e−x + ue−x − 2v′e−2x + 4ve−2x.

Substituting into the original equation gives

−u′e−x +©©©ue−x − 2v′e−2x+ »»»»
4ve−2x

−»»»»3ue−x −»»»»
6ve−2x

+»»»»2ue−x + »»»»
2ve−2x =

1
ex + 1

. (1.6)

Solving (1.5) and (1.6) for u′ and v′ gives

u′ =
ex

ex + 1
, v′ = − e2x

ex + 1
.

which, upon integrating gives

u = ln(ex + 1), v = −ex + ln(ex + 1).

Substituting these into (1.4) gives

y =
(

e−x + e−2x
)

ln(ex + 1),
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noting that the term in the particular solution e−x was neglected because it appears as
part of the complementary solution. This, in turn gives the solution

y = c1e−x + c2e−2x +
(

e−x + e−2x
)

ln(ex + 1),

3. A 10-pound weight attached to a spring stretches it 2 feet. The weight is attached to
a dashpot damping device that offers resistance numerically equal to β (β > 0) times
the instantaneous velocity. Determine the values of the damping constant β so that the
subsequent motion is (a) overdamped, (b) critically damped, and (c) underdamped.
The equation which governs the motion is

m
d2x
dt2 + β

dx
dt

+ kx = 0.

Since the 10 lb weight stretches the string 2ft, then F = kx ⇒ 10 = 2k ⇒ k = 5.
Further, since F = mg, then 10 = 32m ⇒ m = 5

16 . So,

5
16

d2x
dt2 + β

dx
dt

+ 5x = 0,

or

5
d2x
dt2 + 16β

dx
dt

+ 80x = 0.

The characteristic equation is

5m2 + 16βm + 80 = 0,

from which we obtain

m =
8β±√

16β2 − 100
5

.

The motion will be over damped if 16β2 − 100 > 0, critically damped if 16β2 − 100 = 0
and under damped if 16β2 − 100 < 0, or if β > 5/2, β = 5/2 or β < 5/2.

4. Solve the following systems

(i)
dx̄
dt

=
(

1 1
2 0

)
x̄ (ii)

dx̄
dt

=
( −2 1

1 −2

)
x̄,

(iii)
dx̄
dt

=
(

1 −1
1 3

)
x̄, (iv)

dx̄
dt

=
(

5 −4
1 1

)
x̄,

(v)
dx̄
dt

=
(

6 −1
5 4

)
x̄, (vi)

dx̄
dt

=
(

3 −5
−5 −5

)
x̄.

The general form is
(λI − A) ū = 0. (1.7)

and in order to have nontrivial solutions ū, we require that

|λI − A| = 0. (1.8)
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(i) The characteristic equation is
∣∣∣∣

λ− 1 −1
−2 λ

∣∣∣∣ = λ2 − λ− 2 = (λ + 1)(λ− 2) = 0,

from which we obtain the eigenvalues λ = −1 and λ = 2.

Case 1: λ = −1
From (1.7) we have ( −2 −1

−2 −1

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding 2e1 + e2 = 0 and we deduce the eigenvector

ū =
(

1
−2

)
.

Case 2: λ = 2
From (1.7) we have (

1 −1
−2 2

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding e1 − e2 = 0 and we deduce the eigenvector

ū =
(

1
1

)
.

The general solution is then given by

x̄ = c1

(
1
−2

)
e−t + c2

(
1
1

)
e2t.

(ii) The characteristic equation is
∣∣∣∣

λ + 2 −1
−1 λ + 2

∣∣∣∣ = λ2 + 4λ + 3 = (λ + 1)(λ + 3) = 0,

from which we obtain the eigenvalues λ = −1 and λ = −3.

Case 1: λ = −1
From (1.7) we have (

1 −1
−1 1

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding e1 − e2 = 0 and we deduce the eigenvector

ū =
(

1
1

)
.

Case 2: λ = −3
From (1.7) we have ( −1 −1

−1 −1

) (
e1
e2

)
=

(
0
0

)
,
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from which we obtain upon expanding −e1 − e2 = 0 and we deduce the eigenvector

ū =
(

1
−1

)
.

The general solution is then given by

x̄ = c1

(
1
1

)
e−t + c2

(
1
−1

)
e−3t.

(iii) The characteristic equation is
∣∣∣∣

λ− 1 1
−1 λ− 3

∣∣∣∣ = λ2 − 4λ + 4 = (λ− 2)2 = 0,

from which we obtain the eigenvalues λ = 2, 2.

For λ = 2, from (1.7) we have
(

1 1
−1 −1

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding e1 + e2 = 0 and we deduce the eigenvector

ū =
(

1
−1

)
.

For the second solution, we seek a solution of the form

x̄ = ūte2t + v̄e2t. (1.9)

Substitution into our system gives

(2I − A)ū = 0̄, (1.10)

(2I − A)v̄ = −ū. (1.11)

Equation (1.10) gives the eigenvector just found, whereas (1.11) gives
(

1 1
−1 −1

) (
e1
e2

)
= −

(
1
−1

)
,

from which we obtain upon expanding e1 + e2 = −1 and we deduce the eigenvector

ū =
( −1

0

)
.

So the second solution is

x̄ =
(

1
−1

)
te2t +

( −1
0

)
e2t.
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and general solution is

x̄ = c1

(
1

−1

)
e2t + c2

[(
1

−1

)
te2t +

( −1
0

)
e2t

]
.

(iv) The characteristic equation is
∣∣∣∣

λ− 5 4
−1 λ− 1

∣∣∣∣ = λ2 − 6λ + 9 = (λ− 3)2 = 0,

from which we obtain the eigenvalues λ = 3, 3.

For λ = 3, from (1.7) we have
( −2 4
−1 2

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding e1 − 2e2 = 0 and we deduce the eigenvector

ū =
(

2
1

)
.

For the second solution, we seek a solution of the form

x̄ = ūte2t + v̄e2t. (1.12)

Substitution into our system gives

(3I − A)ū = 0̄, (1.13)

(3I − A)v̄ = −ū. (1.14)

Equation (1.13) gives the eigenvector just found, whereas (1.14) gives
( −2 4
−1 2

) (
e1
e2

)
= −

(
2
1

)
,

from which we obtain upon expanding −e1 + 2e2 = −1 and we deduce the eigenvector

ū =
(

1
0

)
.

So the second solution is

x̄ =
(

2
1

)
te3t +

(
1
0

)
e3t.

and general solution is

x̄ = c1

(
2
1

)
e3t + c2

[(
2
1

)
te3t +

(
1
0

)
e3t

]
.
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(v) The characteristic equation is
∣∣∣∣

λ− 6 1
−5 λ− 4

∣∣∣∣ = λ2 − 10λ + 29 = 0,

from which we obtain the eigenvalues λ = 5± 2i.

Case 1: λ = 5 + 2i
From (1.7) we have ( −1 + 2i 1

−5 1 + 2i

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding −(1− 2i)e1 + e2 = 0 and we deduce the eigen-
vector

ū =
(

1
1− 2i

)
.

The second eigenvector would just be the complex conjugate. Thus,

Ē1 =
(

1
1

)
, Ē2 =

(
0

−2

)
.

The two solutions are

x̄1 =
[(

1
1

)
cos 2t−

(
0

−2

)
sin 2t

]
e5t,

x̄2 =
[(

1
1

)
sin 2t +

(
0

−2

)
cos 2t

]
e5t,

and the general solution

x̄ = c1

[(
1
1

)
cos 2t−

(
0

−2

)
sin 2t

]
e5t,

+ c2

[(
1
1

)
sin 2t−

(
0

−2

)
cos 2t

]
e5t.

(vi) The characteristic equation is
∣∣∣∣

λ− 3 −5
5 λ + 5

∣∣∣∣ = λ2 + 2λ + 10 = 0,

from which we obtain the eigenvalues λ = −1± 3i.

Case 1: λ = −1 + 3i
From (1.7) we have ( −4 + 3i −5

5 4 + 3i

) (
e1
e2

)
=

(
0
0

)
,

from which we obtain upon expanding (−4 + 3i)e1 − 5e2 = 0 and we deduce the eigen-
vector

ū =
(

5
−4 + 3i

)
.
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The second eigenvector would just be the complex conjugate. Thus,

Ē1 =
(

5
−4

)
, Ē2 =

(
0
3

)
.

The two solutions are

x̄1 =
[(

5
−4

)
cos 3t−

(
0
3

)
sin 3t

]
e−t,

x̄2 =
[(

5
−4

)
sin 3t +

(
0
3

)
cos 3t

]
e−t,

and the general solution

x̄ = c1

[(
5

−4

)
cos 3t−

(
0
3

)
sin 3t

]
e−t,

+ c2

[(
5

−4

)
sin 3t +

(
0
3

)
cos 3t

]
e−t.
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