
Chapter 4. Fourier Series

At this point we are ready to now consider the canonical equations. Con-

sider, for example the heat equation

ut = uxx, 0 < x < π, t > 0 (4.1)

subject to

u(x, 0) = 2 sin x, u(0, t) = u(π, t) = 0. (4.2)

Here, we will assume that the solutions are separable and are of the form

u(x, t) = X(x)T(t). (4.3)

Substituting into the heat equation (4.1) gives

XT′ = X′′T,

from which we deduce that

T′

T
=

X′′

X
. (4.4)

Since each side is a function of a different variable, we can deduce that

T′ = λT, X′′ = λX. (4.5)

where λ is a constant. The boundary conditions in (4.2) becomes, accord-

ingly

X(0) = X(π) = 0. (4.6)

Integrating the X equation in (4.5) gives rise to three cases depending on

the sign of λ. These are

X(x) =





c1enx + c2e−nx if λ = n2,
c1x + c2 if λ = 0,
c1 sin nx + c2 cos nx if λ = −n2,



2 Chapter 4. Fourier Series

where n is a constant. Imposing the boundary conditions (4.6) shows that

in the case of λ = n2 and λ = 0, the only choice for c1 and c2 are zero and

hence inadmissible as this leads to the zero solution. Thus, we focus only

on the remaining case, λ = −n2. Using the boundary conditions gives

c1 sin 0 + c2 cos 0 = 0, c1 sin nπ + c2 cos nπ = 0, (4.7)

which leads to

c2 = 0, sin nx = 0 ⇒ n = 0, 1, 2, . . . . (4.8)

From (4.5), we then deduce that

T(t) = c3e−n2t (4.9)

thus, giving a solution to the original PDE as

u = XT = ce−n2t sin nx (4.10)

where we have set c = c1c3. Finally, imposing the initial condition (4.2)

gives

u(x, 0) = ce0 sin nx = 2 sin x (4.11)

show that c = 2 and n = 1. Therefore the solution to the PDE subject to

the initial and boundary conditions is

u(x, t) = 2e−t sin x. (4.12)

If the initial condition we to change, say to 4 sin 3x, then we would have

obtained the solution

u(x, t) = 4e−9t sin 3x. (4.13)

However, if the initial condition were u(x, 0) = 2 sin x + 4 sin 3x there

would be a problem as it would be impossible to choose n and c to satisfy

both. However, if we were to solve the heat equation with each function

separately, we can simply just add the solutions together. It is what is call
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the principle of superposition

Theorem Principle of Superposition

If u1 and u2 are two solution to the heat equation, then u = c1u1 + c2u2 is also a

solution.

Proof. Calculating derivatives ut = c1u1t + c2u2t and uxx = c1u1xx + c2u2xx

and substituting into the heat equation show it is identically satisfied if

each of u1 and u2 satisfy the heat equation.Q.E.D

Therefore to solve the heat equation subject to u(x, 0) = 2 sin x + 4 sin 3x

we would obtain

u(x, t) = 2e−t sin x + 4e−9t sin 3x.

The principle of superposition easily extends to more than 2 solutions.

Thus, if

u(x, t) = (an cos nx + bn sin nx) e−n2t,

are solutions to the heat equation, then so is

u(x, t) =
∞

∑
n=1

(an cos nx + bn sin nx)e−n2t. (4.14)

If the initial conditions were such that they involved trigonometric func-

tions, we could choose the integers n and constants an and bn according to

match the terms in the initial condition. However, if the initial condition

was u(x, 0) = πx− x2, we would have a problem as in the general solution

(4.14), there are no x terms. However, consider the following

u1 =
8
π

e−t sin x,

u2 =
8
π

(
e−t sin x +

1
27

e−9t sin 3x
)

, (4.15)

u3 =
8
π

(
e−t sin x +

1
27

e−9t sin 3x +
1

125
e−25t sin 5x

)
.
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Figure 1. The solutions (4.15) with one and two terms.

From figure 1, one will notice that with each additional term added in

(4.15), the solution is a better match to the initial condition. In fact, if we

consider

u =
8
π

∞

∑
n=1

1
(2n− 1)3 e−(2n−1)2t sin(2n− 1)x (4.16)

we get a perfect match to the initial condition. Thus, we are lead to ask

”How are the integers n and constants an and bn chosen as to match the

initial condition?”

4.1 Fourier Series

It is well known that infinitely many functions can be represented by a

power series

f (x) =
∞

∑
i=1

an (x− x0)
n ,

where x0 is the center of the series and an, constants determined by

an =
f (n)(x0)

n!
, i = 1, 2, 3, . . . .

For functions that require different properties, say for example, fixed points

at the endpoints of an interval, a different type of series is required. Exam-

ple of such a series is called Fourier series.

For example, suppose that f (x) = πx− x2 has a Fourier series

πx− x2 = b1 sin x + b2 sin 2x + b3 sin 3x + b4 sin 4x . . . . (4.17)
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How do we choose b1, b2, b3 etc such that the Fourier series looks like the

function? Notice that if multiply (4.17) by sin x and integrate from 0 to π
∫ π

0
(πx− x2) sin x dx = b1

∫ π

0
sin2 x dx + b2

∫ π

0
sin x sin 2x dx + . . . .

then we obtain

4 = b1.
π

2
⇒ b1 = 8/π, (4.18)

since
∫ π

0
(πx− x2) sin x dx = 4,

∫ π

0
sin x2 dx =

π

2
,

∫ π

0
sin x sin nx dx = 0, n = 2, 3, 4, . . .

Similarly, if multiply (4.17) by sin 2x and integrate from 0 to π
∫ π

0
(πx− x2) sin 2x dx = b1

∫ π

0
sin x sin 2x dx + b2

∫ π

0
sin2 2x dx + . . . .

then we obtain

0 = b2.
π

2
⇒ b2 = 0.

Multiply (4.17) by sin 3x and integrate from 0 to π
∫ π

0
(πx− x2) sin 3x dx = b1

∫ π

0
sin x sin 3x dx + b2

∫ π

0
sin 2x sin 3x dx + . . . ,

then we obtain
4

27
= b3.

π

2
⇒ b3 =

8
27π

. (4.19)

Continuing in this fashion, we would obtain

b4 = 0, b5 =
8

125π
, b6 = 0, b7 =

8
73π

. (4.20)

Substitution of (4.18), (4.19) and (4.20) into (4.17) gives (4.15).

4.2 Fourier Series on [−π,π]

Consider the series

f (x) =
1
2

a0 +
∞

∑
n=1

(an cos nx + bn sin nx) (4.21)
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where a0, an and bn are constant coefficients. The question is: “How do

we choose the coefficients as to give an accurate representation of f (x)?”

Well, we use the following properties of cos nπx and sin nπx
∫ π

−π
cos nx dx = 0,

∫ π

−π
sin nx dx = 0, (4.22)

∫ π

−π
cos nx cos mx dx =

{
0 if m 6= n
π if m = n

(4.23)

∫ π

−π
sin nx sin mx dx =

{
0 if m 6= n
π if m = n

(4.24)

∫ π

−π
sin nx cos mx dx = 0. (4.25)

First, if we integrate (4.21) from −π to π, then by the properties in (4.22),

we are left with ∫ π

−π
f (x)dx =

1
2

∫ π

−π
a0dx = πa0,

from which we deduce

a0 =
1
π

∫ π

−π
f (x)dx.

Next we multiply the series (4.21) by cos mx giving

f (x) cos mx =
1
2

a0 cos mx +
∞

∑
n=1

(an cos nx cos mx + bn sin nx cos mx) .

Again, integrate from −π to π. From (4.22), the integration of a0 cos mx

is zero, from (4.23), the integration of cos nx cos mx is zero except when

n = m and further from (4.25) the integrations of sin nx cos mx is zero for

all m and n. This leaves
∫ π

−π
f (x) cos nx dx = an

∫ π

−π
cos2 nx dx = πan,

or

an =
1
π

∫ π

−π
f (x) cos nx dx.
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Similarly, if we multiply the series (4.21) by sin mx then we obtain

f (x) sin mx =
1
2

a0 sin mx +
∞

∑
n=1

(an cos nx sin mx + bn sin nx sin mx) ,

which we integrate from−π to π. From (4.22), the integration of a0 sin mπx

is zero, from (4.25) the integration of sin nx cos mx is zero for all m and n

and further from (4.24) the integration of sin nx sin mx is zero except when

n = m. This leaves
∫ π

−π
f (x) sin nx dx = bn

∫ π

−π
sin2 nx dx = πbn,

or

bn =
1
π

∫ π

−π
f (x) sin nx dx.

Therefore, the Fourier series representation of a function f (x) is given by

f (x) =
1
2

a0 +
∞

∑
n=1

(an cos nx + bn sin nx)

where the coefficients an and bn are chosen such that

an =
1
π

∫ π

−π
f (x) cos nx dx, bn =

1
π

∫ π

−π
f (x) sin nx dx. (4.26)

for n = 0, 1, 2, . . . .

Example 1

Consider

f (x) = x2, [−π, π]. (4.27)

From (4.26) we have

a0 =
1
π

∫ π

−π
x2 dx =

1
π

x3

3

∣∣∣∣
π

−π

=
2π2

3

an =
1
π

∫ π

−π
x2 cos nx dx

=
1
π

[
x2 sin nx

n
+ 2

x cos nx
n2 − 2

sin nx
n3

]∣∣∣∣
π

−π

=
4(−1)n

n2
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and

bn =
1
π

∫ π

−π
x2 sin nx dx

=
1
π

[
−x2 cos nx

n
+ 2

x sin nx
n2 + 2

cos nx
n3

]∣∣∣∣
π

−π

= 0

Thus, the Fourier series for f (x) = x2 on [−π, π] is

fk(x) =
π2

3
+ 4

k

∑
n=1

(−1)n cos nx
n2 . (4.28)

Figure 2 show consecutive plots of the Fourier series (4.28) with 5 and 10

ten on the interval [−π,π] and [−3π,3π].

x
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Figure 2. The solutions (4.28) with five and ten terms on [−π,π].
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Figure 3. The solutions (4.28) with five and ten terms on [−3π,3π].

Example 2

Consider

f (x) = x, [−π, π] (4.29)

From (4.26) we have

a0 =
1
π

∫ π

−π
x dx =

1
π

x2

2

∣∣∣∣
π

−π

= 0

an =
1
π

∫ π

−π
x cos nx dx

=
1
π

[
x sin nx

n
+

cos nx
n2

]∣∣∣∣
π

−π

= 0

and

bn =
1
π

∫ π

−π
x sin nx dx

=
1
π

[
−x cos nx

n
+

sin nx
n2

]∣∣∣∣
π

−π

=
2(−1)n+1

n
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Thus, the Fourier series for f (x) = x on [−π, π] is

fk(x) = 2
k

∑
n=1

(−1)n+1 sin nx
n

. (4.30)

Figure 3 show consecutive plots of the Fourier series (4.30) with 5 and 50

terms on the interval [−π,π] and [−3π,3π].

0
0
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Figure 4. The solutions (4.30) with five and fifty terms on [−π,π].
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Figure 5. The solutions (4.30) with five and fifty terms on [−3π,3π].
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Example 3

Consider

f (x) =

{
1 if −π < x < 0,
x + 1 if 0 < x < π,

From (4.26) we have

a0 =
1
π

∫ 0

−π
dx +

1
π

∫ π

0
x + 1 dx =

1
π

x|0−π +
1
π

x2

2
+ x

∣∣∣∣
π

0
=

π

2
+ 2

an =
1
π

∫ 0

−π
cos nx dx +

1
π

∫ π

0
(x + 1) cos nx dx

=
1
π

sin nx
n

∣∣∣∣
0

−π

+
1
π

[
(x + 1)

sin nx
n

+
cos nx

n2

]∣∣∣∣
π

0

=
1
π

(−1)n − 1
n2

and

bn =
1
π

∫ 0

−π
sin nx dx +

1
π

∫ π

0
(x + 1) sin nx dx

=
1
π
−cos nx

n

∣∣∣
0

−π
+

1
π

[
−(x + 1)

cos nx
n

+
sin nx

n2

]∣∣∣∣
π

0

=
1
π

(−1)n − 1
n

+
1
π

(π + 1)(−1)n+1 + 1
n

=
(−1)n+1

n
.

Thus, the Fourier series for f (x) = x on [−π, π] is

fk(x) =
π

4
+ 1 +

k

∑
n=1

(
1
π

(−1)n − 1
n2 cos nx +

(−1)n+1

n
sin nx

)
. (4.31)

Figure 6 shows a plot of the Fourier series (4.31) with 10 terms on the in-

terval [−π,π].
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Figure 6. The solutions (4.31) with 10 terms.

4.3 Fourier Series on [−L ,L]

Consider the series

f (x) =
1
2

a0 +
∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
(4.32)

where L is a positive number and a0, an and bn constant coefficients. The

question is: “How do we choose the coefficients as to give an accurate

representation of f (x)?” Well, we use the following properties of cos nπx
L

and sin nπx
L

∫ L

−L
cos

nπx
L

dx = 0,
∫ L

−L
sin

nπx
L

dx = 0, (4.33)
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∫ L

−L
cos

nπx
L

cos
mπx

L
dx =

{
0 if m 6= n
L if m = n

(4.34)

∫ L

−L
sin

nπx
L

sin
mπx

L
dx =

{
0 if m 6= n
L if m = n

(4.35)

∫ L

−L
sin

nπx
L

cos
mπx

L
dx = 0. (4.36)

First, if we integrate (4.32) from −L to L, then by the properties in (4.33),

we are left with ∫ L

−L
f (x)dx =

1
2

∫ L

−L
a0dx = La0,

from which we deduce

a0 =
1
L

∫ L

−L
f (x)dx.

Next we multiply the series (??) by cos mπx
L giving

f (x) cos
mπx

L
=

1
2

a0 cos
mπx

L
+

∞

∑
n=1

(
an cos

nπx
L

cos
mπx

L
+ bn sin

nπx
L

cos
mπx

L

)
.

Again, integrate from −L to L. From (4.33), the integration of a0 cos mπx
L

is zero, from (4.34), the integration of cos nπx
L cos mπx

L is zero except when

n = m and further from (4.36) the integrations of sin nπx
L cos mπx

L is zero

for all m and n. This leaves
∫ L

−L
f (x) cos

nπx
L

dx = an

∫ L

−L
cos2 nπx

L
dx = Lan,

or

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx.

Similarly, if we multiply the series (??) by sin mπx
L then we obtain

f (x) sin
mπx

L
=

1
2

a0 sin
mπx

L
+

∞

∑
n=1

(
an cos

nπx
L

sin
mπx

L
+ bn sin

nπx
L

sin
mπx

L

)
,

which we integrate from −L to L. From (4.33), the integration of a0 sin mπx
L

is zero, from (4.36) the integration of sin nπx
L cos mπx

L is zero for all m and
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n and further from (4.35) the integration of sin nπx
L sin mπx

L is zero except

when n = m. This leaves
∫ L

−L
f (x) sin

nπx
L

dx = bn

∫ L

−L
sin2 nπx

L
dx = Lan,

or

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx.

Therefore, the Fourier series representation of a function f (x) is given by

f (x) =
1
2

a0 +
∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)

where the coefficients an and bn are chosen such that

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx. (4.37)

for n = 0, 1, 2, . . . .

Example 4

Consider

f (x) = 9− x2, [−3, 3] (4.38)

In this case L = 3 so from (4.37) we have

a0 =
1
3

∫ 3

−3
9− x2 dx =

1
3

[
9x− x3

3

]∣∣∣∣
3

−3
= 12

an =
1
3

∫ 3

−3
(9− x2) cos

nπx
3

dx

=
1
3

[(
27
nπ

− 3x2

nπ
+

54
n3π3

)
sin

nπx
3

− 18x
π2n2 cos

nπx
3

]∣∣∣∣
3

−3

=
36(−1)n+1

n2π2

and

bn =
1
3

∫ 3

−3
(9− x2) cos

nπx
3

dx

=
1
3

[
−

(
27
nπ

− 3x2

nπ
+

54
n3π3

)
cos

nπx
3

− 18x
π2n2 sin

nπx
3

]∣∣∣∣
3

−3
= 0
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Thus, the Fourier series for (4.38) on [−3, 3] is

fk(x) = 6 +
k

∑
n=1

(−1)n+1

n2π2 cos
nπx

3
. (4.39)

Figure 6 show the graph of this Fourier series (4.39) with 20 terms.

x

50-5

10

5

0

Figure 6. The solutions (4.39) with 20 terms.

Example 5

Consider

f (x) =





−2− x if −2 < x < −1,
x if −1 < x < 1,
2− x if 1 < x < 2,

(4.40)
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In this case L = 2 so from (4.37) we have

a0 =
1
2

{∫ −1

−2
(−2− x) dx +

∫ 1

−1
x dx +

∫ 2

1
(2− x) dx

}

=
1
2

{[
−2x− x2

2

]∣∣∣∣
−1

−2
+

x2

2

∣∣∣∣
1

−1
+

[
2x− x2

2

]∣∣∣∣
2

1

}
= 0

an =
1
2

{∫ −1

−2
(−2− x) cos

nπx
2

dx +
∫ 1

−1
x cos

nπx
2

dx +
∫ 2

1
(2− x) cos

nπx
2

dx

}

=
[
− (x + 2)

nπ
sin

nπx
2

− 2
n2π2 cos

nπx
2

]∣∣∣∣
−1

−2

+
[

x
nπ

sin
nπx

2
+

2
n2π2 cos

nπx
2

]∣∣∣∣
1

−1

+
[
− (x− 2)

nπ
sin

nπx
2

− 2
n2π2 cos

nπx
2

]∣∣∣∣
2

1
= 0

and

bn =
1
2

{∫ −1

−2
(−2− x) sin

nπx
2

dx +
∫ 1

−1
x sin

nπx
2

dx +
∫ 2

1
(2− x) sin

nπx
2

dx

}

=
[
(x + 2)

nπ
cos

nπx
2

− 2
n2π2 sin

nπx
2

]∣∣∣∣
−1

−2

+
[
− x

nπ
cos

nπx
2

+
2

n2π2 sin
nπx

2

]∣∣∣∣
1

−1

+
[
(x− 2)

nπ
cos

nπx
2

− 2
n2π2 sin

nπx
2

]∣∣∣∣
2

1

=
16

n2π2 sin
nπ

2

=

{
16

n2π2 if n = 1, 5, 9 . . . ,
− 16

n2π2 if n = 3, 7, 11 . . . ,

Thus, the Fourier series for (4.40) on [−2, 2] is

fk(x) =
16
π2

{
sin

πx
2
− 1

32 sin
3πx

2
+

1
52 sin

5πx
2

−+ . . .
}

=
16
π2

k

∑
n=1

(−1)n+1

(2n− 1)2 sin
(2n− 1)πx

2
(4.41)
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Figure 7 show the graph of this Fourier series (4.41) with 5 terms.

2

2
0

-2

0-2

x

Figure 7. The solutions (4.41) with 5 terms.

Example 6

Consider

f (x) =

{
0 if −1 < x < 0,
1 if 0 < x < 1,

In this case L = 1 so from (4.37) we have

a0 =
∫ 1

0
dx = 1

an =
∫ 1

0
cos nπx dx =

1
nπ

sin nπx
∣∣∣∣
1

0
= 0

and

bn =
∫ 1

0
sin nπx dx − 1

nπ
cos{nπx

∣∣∣∣
1

0
=

1− (−1)n

nπ

Thus, the Fourier series for (4.3) on [−1, 1] is

fk(x) =
1
2

+
1
π

k

∑
n=1

1− (−1)n

n
sin nπx

=
1
2

+
2
π

k

∑
n=1

sin(2n− 1)πx
2n− 1

(4.42)
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Figure 8 and 9 show the graph of this Fourier series (4.42) with 5 and 50

terms.

10-1

1

0.5

0

x

Figure 8. The solutions (4.42) with 5 terms.

10-1

1

0.5

0

x

Figure 9. The solutions (4.42) with 50 terms.

It is interesting to note that regardless of the number of terms we have in

the Fourier series, we cannot eliminate the spikes at x = −1, 0, 1 etc. This

phenomena is know as Gibb’s phenomena.
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4.4 Odd and Even Extensions

Consider f (x) = x on [0,π]. Here the interval is half the interval [−π,π].

Can we still construct a Fourier series for this? Well, it really depends

on what f (x) looks like on the interval [−π,0]. For example, if f (x) = x

on [−π,0], then yes. If f (x) = −x on [−π,0], then also yes. In either

case, as long a we are given f (x) on [−π,0], then the answer is yes. If we

are just given f (x) on [0,π], then it is natural to extend f (x) to [−π,0] as

either an odd extension or even extension. Recall that a function is even it

f (−x) = f (x) and odd if f (−x) = − f (x). For example, if

f (x) = x, then f (−x) = −x = − f (x)

so f (x) = x is odd. Similarly, if

f (x) = x2, then f (−x) = (−x)2 = x2 = f (x)

so f (x) = x2 is even. For each extension, the Fourier series constructed

will contain only sine terms or cosine terms. These series respectively are

called Sine series and Cosine series. Before we consider each series sepa-

rately, it is necessary to establish the following lemma’s.

LEMMA 1 If f (x) is an odd function then

∫ l

−l
f (x) dx = 0

and if f (x) is an even function, then

∫ l

−l
f (x) dx = 2

∫ l

0
f (x) dx.

Proof

Consider ∫ l

−l
f (x) dx =

∫ 0

−l
f (x) dx +

∫ l

0
f (x) dx.
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Under a change of variables x = −y, the second integral changes and we

obtain ∫ l

−l
f (x) dx = −

∫ 0

l
f (−y) dy +

∫ l

0
f (x) dx.

If f (x) is odd, then f (−y) = − f (y) then
∫ l

−l
f (x) dx =

∫ 0

l
f (y) dy +

∫ l

0
f (x) dx

= −
∫ l

0
f (y) dy +

∫ l

0
f (x) dx

= 0.

If f (y) is even, then f (−y) = f (y) then
∫ l

−l
f (x) dx = −

∫ 0

l
f (y) dy +

∫ l

0
f (x) dx

=
∫ l

0
f (y) dy +

∫ l

0
f (x) dx

= 2
∫ l

0
f (x) dx,

establishing the result. At this point we a ready to consider each series

separately.

4.4.1 Sine Series

If f (x) is given on [0,L] we assume that f (x) is an odd function which gives

us f (x) on the interval [−L,0]. We now consider the Fourier coefficients an

and bn

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (4.43)

Since f (x) is odd and cos nπx
L is even, then their product is odd and by

lemma 1

an = 0, ∀n.

Similarly, since f (x) is odd and sin nπx
L is odd, then their product is even

and by lemma 1

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (4.44)



4.4. Odd and Even Extensions 21

The Fourier series is therefore

fk(x) =
k

∑
n=1

bn sin
nπx

L
(4.45)

where bn is given in (4.44).

Example 1

Find a Fourier sine series for

f (x) = x2, [0, 1]. (4.46)

The coefficient bn is given by

bn = 2
∫ 1

0
x sin nπx dx

=
[
−x2 cos nπ x

nπ
+ 2

x sin nπ x
n2π2 + 2

cos nπ x
n3π3

]∣∣∣∣
1

0

= 2
(−1)n − 1

n3π3 − (−1)n

nπ

giving the Fourier Sine series as

f = 2
k

∑
n=1

(
2
(−1)n − 1

n3π3 − (−1)n

nπ

)
sin nπx. (4.47)

0
1

-1

0-1

y

x

1

Figure 10. The function (4.46) with its odd extension and its Fourier sine series
(4.47) with 10 terms .
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Example 2

Find a Fourier sine series for

f (x) = cos x, [0, π] (4.48)

Two cases need to be considered here. The case where n = 1 and the case

where n 6= 1. The coefficient b1 is given by

b1 =
2
π

∫ π

0
cos x sin πx dx = 0

and the coefficient bn is given by

bn =
2
π

∫ π

0
cos x sin nπx dx

=
[
−1

2
cos(n− 1)x

n− 1
− 1

2
cos(n + 1)x

n + 1

]∣∣∣∣
π

0

=
n (1 + (−1)n)

n2 − 1
.

The Fourier Sine series is then given by

f =
2
π

k

∑
n=2

n (1 + (−1)n)
n2 − 1

sin nx

=
8
π

k

∑
n=1

n
4n2 − 1

sin 2nx. (4.49)

y

x

20

1

-2
0

-1

Figure 11. The function (4.48) with its odd extension and its Fourier sine series
(4.49) with 20 terms .
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4.4.2 Cosine Series

If f (x) is given on [0,L] we assume that f (x) is an even function which

gives us f (x) on the interval [−L,L]. We now consider the Fourier coeffi-

cients an and bn.

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx (4.50)

Since f (x) is even and cos nπx
L is even, then their product is even and by

lemma 1

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. (4.51)

Similarly

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx (4.52)

Since f (x) is even and sin nπx
L is odd, then their product is odd and by

lemma 1

bn = 0, ∀ n. (4.53)

The Fourier series is therefore

fk(x) =
1
2

a0 +
k

∑
n=1

an cos
nπx

L
(4.54)

where an is given in (4.53).

Example 3

Find a Fourier cosine series for

f (x) = x, [0, 2]. (4.55)

The coefficient a0 is given by

a0 =
2
2

∫ 2

0
x dx =

x2

2

∣∣∣∣
2

0
= 2
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The coefficient nn is given by

an =
∫ 2

0
x cos

nπ

2
x dx

=
[

2x
nπ

sin
nπ x

2
+

4
n2π2 cos

nπ x
2

]∣∣∣∣
2

0

=
4

n2π2 ((−1)n − 1)

giving the Fourier Cosine series as

f = 1 +
4

π2

k

∑
n=1

(−1)n − 1
n2 cos

nπ x
2

. (4.56)

2

2

1

0
0-2

y

x

Figure 12. The function (4.55) with its even extension and its Fourier sine series
(4.56) with 3 terms .

Example 4

Find a Fourier cosine series for

f (x) = sin x, [0, π]. (4.57)
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The coefficient a0 is given by

a0 =
2
π

∫ π

0
sin x dx (4.58)

=
2
π

[− cos x]|π0
=

4
π

For the remaining coefficients an, the case a1 again needs to be considered

separately. For a1

a1 =
2
π

∫ π

0
sin x cos x dx = 0

and the coefficient an, n ≥ 2 is given by

an =
2
π

∫ π

0
sin x cos nπx dx

=
[

1
2

cos(n− 1)x
n− 1

− 1
2

cos(n + 1)x
n + 1

]∣∣∣∣
π

0

= −n (1 + (−1)n)
n2 − 1

.

Thus, the Fourier series is

f = − 2
π

k

∑
n=2

n (1 + (−1)n)
n2 − 1

sin nx

= − 8
π

k

∑
n=1

n
4n2 − 1

sin 2nx. (4.59)
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y

x

20-2

1

0.5

0

Figure 13. The function (4.57) with its even extension and its Fourier sine series
(4.59) with 5 terms .

Example 5

Find a Fourier sine and cosine series for

f (x) =

{
4x− x2 for 0 ≤ x ≤ 2
8− 2x for 2 < x < 4

(4.60)

For the Fourier sine series an = 0 and bn are obtained by

bn =
2
4

∫ 2

0
(4x− x2) sin

nπx
4

dx +
2
4

∫ 4

2
(8− 2x) sin

nπx
4

dx

=
[(

32− 16x
n2π2

)
sin

nπx
4

+
(

2x2 − 8x
nπ

− 64
n3π3

)
cos

nπx
4

]∣∣∣∣
2

0

+
[

16
n2π2 sin

nπx
4

− 4x− 16
nπ

cos
nπx

4

]∣∣∣∣
4

2

=
16

n2π2 sin
nπ

2
+

64
n3π3

(
1− cos

nπ

2

)
.

Thus, the Fourier sine series is given by

f =
16
π2

k

∑
n=1

(
1
n2 sin

nπ

2
+

4
n3π

(
1− cos

nπ

2

))
sin

nπx
4

. (4.61)
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For the Fourier cosine series bn = 0 and a0 and an are given by

a0 =
2
4

∫ 2

0
4x− x2 dx +

2
4

∫ 4

2
8− 2x dx

=
1
2

[
2x2 − x3

3

]∣∣∣∣
2

0
+

1
2

[
8x− x2

]∣∣∣
4

2

=
8
3

+ 2 =
14
3

,

and

an =
2
4

∫ 2

0
(4x− x2) cos

nπx
4

dx +
2
4

∫ 4

2
(8− 2x) cos

nπx
4

dx

=
[(

32− 16x
n2π2

)
cos

nπx
4

−
(

2x2 − 8x
nπ

− 64
n3π3

)
sin

nπx
4

]∣∣∣∣
2

0

+
[
− 16

n2π2 cos
nπx

4
+

4x− 16
nπ

sin
nπx

4

]∣∣∣∣
4

2

=
16

n2π2

(
cos

nπ

2
− cos nπ − 2

)
+

64
n3π3 sin

nπ

2
.

Thus, the Fourier cosine series is given by

f =
14
3

+
16
π2

k

∑
n=1

(
1
n2

(
cos

nπ

2
− cos nπ − 2

)
+

4
n3π

sin
nπ

2

)
cos

nπx
4

,

(4.62)

4

4
0

0

-4

-4

y

x

Figure 14. The function (4.60) with its odd extension and its Fourier sine series
(4.61) with 3 terms .
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4
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y

x

2

0
0-4

Figure 15. The function (4.60) with its even extension and its Fourier cosine series
(4.62) with 3 terms .

As shown in the examples in this chapter, often only a few terms are

needed to obtain a fairly good representation of the function. It is interest-

ing to note that if discontinuity is encountered on the extension, Gibb’s

phenomena occurs. In the next chapter, we return to solving the heat

equation, Laplace’s equation and the wave equation using separation of

variables as introduced at the beginning of this chapter.

Exercises

1. Find Fourier series for the following

(i) f (x) = e−x on [−1, 1]

(ii) f (x) = | x | on [−2, 2]

(iii) f (x) =

{
−1 if −1 < x < 0,
x− 1 if 0 < x < 1,

(iv) f (x) = e−x2
on [−5, 5].



4.4. Odd and Even Extensions 29

2. Find Fourier sine and cosine series for the following and illustrate the

function and its corresponding series on [−L, L] and [−2L, 2L]

(i) f (x) =





x if 0 < x < 1,
1 if 1 < x < 2,
3− x if 2 < x < 3,

(ii) f (x) = x− x2 on [0, 2]

(iii) f (x) =

{
x + 1 if 0 < x < 1,
4− 2x if 1 < x < 2,

,

(iv) f (x) =

{
x2 if 0 < x < 1,
2− x if 1 < x < 2,

,

3. Find the first 10 terms numerically of the Fourier series of the following

(i) f (x) = e−x2
, on [−5, 5]

(ii) f (x) =
√

x, on [0, 4]

(iii) f (x) = −x ln x on [0, 1].


