
Chapter 5. Separation of Variables

At this point we are ready to now resume our work on solving the three

main equations: the heat equation, Laplace’s equation and the wave equa-

tion using the method of separation of variables.

4.1 The heat equation

Consider, for example, the heat equation

ut = uxx, 0 < x < 1, t > 0 (4.1)

subject to the initial and boundary conditions

u(x, 0) = x− x2, u(0, t) = u(1, t) = 0. (4.2)

Assuming separable solutions

u(x, t) = X(x)T(t), (4.3)

shows that the heat equation (4.1) becomes

XT′ = X′′T,

which, after dividing by XT and expanding gives

T′

T
=

X′′

X
, (4.4)

implying that

T′ = λT, X′′ = λX, (4.5)

where λ is a constant. From (4.2) and (4.3), the boundary conditions be-

comes

X(0) = X(1) = 0. (4.6)
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Integrating the X equation in (4.5) gives rise to three cases depending on

the sign of λ but as seen in the last chapter, only the case where λ = −k2

for some constant k is applicable which we have as the solution

X(x) = c1 sin kx + c2 cos kx. (4.7)

Imposing the boundary conditions (4.6) shows that

c1 sin 0 + c2 cos 0 = 0, c1 sin k + c2 cos k = 0, (4.8)

which leads to

c2 = 0, c1 sin k = 0 ⇒ k = 0, π, 2π, . . . nπ, (4.9)

where n is an integer. From (4.5), we further deduce that

T(t) = c3e−n2π2t,

giving the solution

u(x, t) =
∞

∑
n=1

bne−n2π2t sin nπx,

where we have set c1c3 = bn. Using the initial condition gives

u(x, 0) = x− x2 =
∞

∑
n=1

bn sin nπx.

At this point, we recognize that we have a Fourier sine series and that the

coefficients bn are chosen such that

bn = 2
∫ 1

0
(x− x2) sin nπx dx

= 2
[

1− 2x
n2π2 cos nπx +

(
x2 − x

nπ
− 2

n3π3

)
cos nπx

]∣∣∣∣
1

0

=
4

n3π3 (1− (−1)n).

Thus, the solution of the PDE as

u(x, t) =
4

π3

∞

∑
n=1

1− (−1)n

n3 e−n2π2t sin nπx. (4.10)
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Figure 1 shows the solution at times t = 0, 0.1 and 0.2.

Example 1

Solve

ut = uxx, 0 < x < 1, t > 0 (4.11)

subject to

u(x, 0) = x− x2, ux(0, t) = ux(1, t) = 0. (4.12)

This problem is similar to the proceeding problem except the boundary

conditions are different. The last problem had the boundaries fixed at zero

whereas in this problem, the boundaries are insulated (i.e. no flux bound-

ary conditions). Assuming that the solutions are separable

u(x, t) = X(x)T(t), (4.13)

then from the heat equation, we obtain

T′ = λT, X′′ = λX, (4.14)

where λ is a constant. The boundary conditions in (4.12) become, accord-

ingly

X′(0) = X′(1) = 0. (4.15)

Integrating the X equation in (4.14) gives rise to again three cases depend-

ing on the sign of λ but as seen earlier, only the case where λ = −k2 for

some constant k is relevant. Thus, we have

X(x) = c1 sin kx + c2 cos kx. (4.16)

Imposing the boundary conditions (4.15) shows that

c1k cos 0− c2k sin 0 = 0, c1k cos k− c2k sin k = 0, (4.17)

which leads to

c1 = 0, sin k = 0 ⇒ k = 0, π, 2π, . . . , nπ, (4.18)
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where n is an integer. From (4.14), we also deduce that

T(t) = c3e−n2π2t,

giving the solution

u(x, t) =
∞

∑
n=0

ane−n2π2t cos nπx,

where we have set c1c3 = an. Using the initial condition gives

u(x, 0) = x− x2 =
∞

∑
n=0

an cos nπx

=
a0

2
+

∞

∑
n=1

an cos nπx.

We again recognize that we have a Fourier cosine series and that the coef-

ficients an are chosen such that

a0 = 2
∫ 1

0
(x− x2) dx = 2

[
x2

2
− x3

3

]∣∣∣∣
1

0
=

1
3

,

an = 2
∫ 1

0
(x− x2) cos nπx dx

= 2
[

1− 2x
n2π2 sin nπx−

(
x2 − x

nπ
− 2

n3π3

)
sin nπx

]∣∣∣∣
1

0

= − 2
n3π3 (1 + (−1)n).

Thus, the solution of the PDE as

u(x, t) =
1
3

+
2

π3

∞

∑
n=1

(−1)(n + 1)− 1
n3 e−n2π2t cos nπx. (4.19)

Figure 1 shows the solution at times t = 0, 0.25 and 0.5. It is interesting

to note that even though that same initial condition are used for each of

the two problems, fixing the boundaries and insulated them gives rise two

totally different behaviors after t ≥ 0.
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Figure 1. The solution of the heat equation with the same initial condition with
fixed and no flux boundary conditions.

Example 2

Solve

ut = uxx, 0 < x < 2, t > 0 (4.20)

subject to

u(x, 0) =

{
x if 0 < x < 1,
2− x if 1 < x < 2,

u(0, t) = ux(2, t) = 0. (4.21)

In this problem, we have a mixture of both fixed and no flux boundary

conditions. Again, assuming separable solutions

u(x, t) = X(x)T(t), (4.22)

gives rise to

T′ = λT, X′′ = λX, (4.23)

where λ is a constant. The boundary conditions in (4.21) becomes, accord-

ingly

X(0) = X′(1) = 0. (4.24)

Integrating the X equation in (4.23) with λ = −k2 for some constant k gives

X(x) = c1 sin kx + c2 cos kx. (4.25)
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Imposing the boundary conditions (4.24) shows that

c1 sin 0 + c2 cos 0 = 0, c1k cos 2k− c2k sin 2k = 0,

which leads to

c2 = 0, cos 2k = 0 ⇒ k =
π

4
,

3π

4
,

5π

4
, . . . ,

(2n− 1)π

4
,

for integer n. From (4.23), we then deduce that

T(t) = c3e−
(2n−1)2

16 π2t,

giving the solution

u(x, t) =
∞

∑
n=1

bne−
(2n−1)2

16 π2t sin
(2n− 1)

4
πx,

where we have set c1c3 = bn. Using the initial condition give

u(x, 0) =
∞

∑
n=1

bn sin
(2n− 1)

4
πx.

Recognizing that we have a Fourier sine series, we obtain the coefficients

bn as

bn = 2
∫ 1

0
x sin

(2n− 1)
4

πx dx +
∫ 2

1
(2− x) sin

(2n− 1)
4

πx dx

=
[

32
(2n− 1)2π2 sin

(2n− 1)
4

πx− 8x
(2n− 1)π

cos
2n− 1

4
πx

]∣∣∣∣
1

0

+
[
− 32

(2n− 1)2π2 sin
(2n− 1)

4
πx +

8(x− 2)
(2n− 1)π

cos
2n− 1

4
πx

]∣∣∣∣
2

1

=
32

(2n− 1)2π2

(
sin

(2n− 1)π

4
+ cos nπ

)
.

Hence, the solution of the PDE is

u(x, t) =
32
π2

∞

∑
n=1

(
sin (2n−1)π

4 + cos nπ
)

(2n− 1)2 e−
(2n−1)2

16 π2t sin
2n− 1

4
πx. (4.26)

Figure 2 shows the solution both in short time t = 0, 0.1, 0.2 and long time

t = 10, 20, 30.
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Figure 2. Short time and long time behavior of the solution (4.26).

Example 3

Solve

ut = uxx, 0 < x < 2, t > 0 (4.27)

subject to

u(x, 0) = 2x− x2 u(0, t) = 0, ux(2, t) = −u(2, t). (4.28)

In this problem, we have a fixed left endpoint and a radiating right end

point. Assuming separable solutions

u(x, t) = X(x)T(t), (4.29)

gives rise to

T′ = λT, X′′ = λX, (4.30)

where λ is a constant. The boundary conditions in (4.28) becomes, accord-

ingly

X(0) = 0, X′(2) = −X(2). (4.31)

Integrating the X equation in (4.30) with λ = −k2 for some constant k gives

X(x) = c1 sin kx + c2 cos kx. (4.32)

Imposing the first boundary condition of (4.31) shows that

c1 sin 0 + c2 cos 0 = 0, ⇒ c2 = 0
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and the second boundary condition of (4.31) gives

tan 2k = −k. (4.33)

It is very important that we recognize that the solutions of (4.33) are not

equally spaced as seen in earlier problems. In fact, there are an infinite

number of solutions of this equation. Figure 3 shows graphically the curves

y = −k and y = tan 2k. The first three intersection points are the first three

solutions of (4.33).
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0 43

Figure 3. The graph of y = tan 2k and y = −k.

Thus, it is necessary that we solve for k numerically. The first 10 solutions

are given in table 1.

n kn n kn
1 1.144465 6 8.696622
2 2.54349 7 10.258761
3 4.048082 8 11.823162
4 5.586353 9 13.389044
5 7.138177 10 14.955947

Table 1. The first ten solution of tan 2k = −k.

Therefore, we have

X(x) = c1 sin knx. (4.34)

Further, integrating (4.30) for T gives

T(t) = c3e−k2
nt (4.35)
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and together with X, we have the solution to the PDE as

u(x, t) =
∞

∑
n=1

cne−k2
nt sin knx, (4.36)

Imposing the boundary conditions (4.28) gives

u(0, t) = 2x− x2 =
∞

∑
n=1

cn sin knx, (4.37)

It is important to know that the cn’s are not given by the formula

cn =
2
2

∫ 2

0
(2x− x2)sinknx, dx

as usual. The reason for this is that the kn’s are not equally spaced. So

it is necessary to examine (4.37) on its own. Multiplying by sin kmx and

integrating over [0,2] gives

∫ 2

0
(2x− x2) sin kmx dx =

∞

∑
n=1

cn

∫ 2

0
sin kmx sin knx dx,

For n 6= m, we have
∫ 2

0
sin kmx sin knx dx =

km sin 2kn cos 2km − kn sin 2km cos 2kn

k2
n − k2

m
(4.38)

and imposing (4.33) for each of km and kn shows (4.38) to be identically

satisfied. Therefore, we obtain the following when n = m
∫ 2

0
(2x− x2) sin knx dx = cn

∫ 2

0
sin2 knx dx,

or

cn =

∫ 2
0 (2x− x2) sin knx dx

∫ 2
0 sin2 knx dx,

(4.39)

Table 2 gives the first ten cn’s that correspond to each kn.

n cn n cn
1 0.873214 6 0.028777
2 0.341898 7 -.016803
3 -.078839 8 0.015310
4 0.071427 9 -.010202
5 -.032299 10 0.009458

Table 2. The coefficients cn from (4.77).
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Having obtain kn and cn, the solution to the problem is found in (4.36).

Figure 4 show plots at time t = 0, 1, and 2 when 20 terms are used.
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Figure 4. The solution (4.36).

4.1.1 Nonhomogeneous boundary conditions

In the preceding examples, the boundary conditions where either fixed

to zero, insulted or radiating. Often, we encounter boundary condition

which are non standard or nonhomogeneous. For example, the boundary

may be fixed to particular constant or the flux is maintained at a constant

value. The following examples illustrate.

Example 4

Solve

ut = uxx, 0 < x < 3, t > 0 (4.40)

subject to

u(x, 0) = 4x− x2 u(0, t) = 0, u(3, t) = 3. (4.41)

If we seek separable solutions u(x, t) = X(x)T(t), then from (4.41) we have

X(0)T(t) = 0, X(3)T(t) = 3, (4.42)

and we have a problem− the second boundary condition doesn’t separate.

To over come this we introduce the transformation u = v + ax + b and ask,
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”Can we choose the constants a and b as to fix both boundary conditions

to zero. Upon substitution of both boundary conditions (4.41), we obtain

0 = v(0, t) + a(0) + b, 3 = v(3, t) + 3a + b (4.43)

Now we require that v(0, t) = 0 and v(3, t) = 0 which implies that we

must choose a = 1 and b = 0. Therefore, we have

u = v + x. (4.44)

We notice that under the transformation (4.44), the original equation doesn’t

change form, i.e.

ut = uxx ⇒ vt = vxx

however, the initial condition does change, it becomes

v(x, 0) = 3x− x2.

Thus, we have the new problem to solve

vt = vxx, 0 < x < 3, t > 0 (4.45)

subject to

v(x, 0) = 3x− x2 v(0, t) = 0, v(3, t) = 3. (4.46)

At this point, we seek the usual separable solutions V(x, t) = X(x)T(t)

which lead to the and the systems X′′ = −k2X and T′ = −k2T with the

boundary conditions X(0) = 0 and X(3) = 0. Solving for X gives

X(x) = c1 sin kx + c2 cos kx, (4.47)

and imposing both boundary conditions gives

X(x) = c1 sin
nπ

3
x, (4.48)

and

T(t) = c3e−
n2π2

9 t
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where n is an integer. Therefore, we have the solution of (4.45) as

v(x, t) =
∞

∑
n=1

bne−
n2π2

9 t sin
nπ

3
x.

Recognizing that we have a Fourier sine series, we obtain the coefficients

bn as

bn =
2
3

∫ 3

0
(3x− x2) sin

nπ

3
x dx

=
[
−6(2x− 3)

n2π2 sin
nπ

3
x +

3(n2π2x2 − 3n2π2x− 18)
n3π3 cos

nπ

3
x
]∣∣∣∣

3

0

=
32(1− (−1)n)

n3π3 .

This gives

v(x, t) =
32
π3

∞

∑
n=1

(1− (−1)n)
n3 e−

n2π2
9 t sin

nπ

3
x.

and since u = v + x, we obtain the solution for u as

u(x, t) = x +
32
π3

∞

∑
n=1

(1− (−1)n)
n3 e−

n2π2
9 t sin

nπ

3
x. (4.49)

2t =

1t =

0t =
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30

Figure 5. The solution (4.49) at time t = 0, 1 and 2.

Example 5

Solve

ut = uxx, 0 < x < 1, t > 0 (4.50)

subject to

u(x, 0) = 0 ux(0, t) = −1, ux(1, t) = 0. (4.51)
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Unfortunately, the trick u = v + ax + b won’t work since ux = vx + a and

choosing a to fix the right boundary to zero only makes the left boundary

nonzero. To overcome this we might try u = v + ax2 + bx but the original

equation changes

ut = uxx, ⇒ vt = vxx + 2a (4.52)

As a second attempt, we try

u = v + a(x2 + 2t) + bx (4.53)

noting now

ut = uxx, ⇒ vt = vxx. (4.54)

Since ux = vx + 2ax + b, then choosing a = 1/2 and b = −1 gives the

the new boundary conditions as vx(0, t) = 0 and vx(2, t) = 0 and the

transformation becomes

u = v +
1
2
(x2 + 2t)− x, (4.55)

Finally, we consider the initial condition. From (4.55), we have v(x, 0) =

u(x, 0) − 1
2 x2 + x = x − x2

2 and our problem is transformed to the new

problem

vt = vxx, 0 < x < 1, t > 0 (4.56)

subject to

v(x, 0) = x− 1
2

x2, vx(0, t) = vx(1, t) = 0 (4.57)

A separation of variables v = XT leads to X′′ = −k2X and T′ = −k2T

from which we obtain

X = c1 sin kx + c2 cos kx, X = c1k cos kx− c2k sin kx, (4.58)

and imposing the boundary conditions (4.57) gives

c1 = 0, k = nπ, (4.59)

where n is an integer. This then leads to

X(x) = c2 cos nπx (4.60)
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and further

T(t) = c3e−n2π2t. (4.61)

Finally we arrive at

v(x, t) =
a0

2
+

∞

∑
n=1

ane−n2π2t cos nπx.

noting that we have chosen an = c1c3. Upon substitution of t = 0 and

using the initial condition (4.57), we have

x− 1
2

x2 =
a0

2
+

∞

∑
n=1

an cos nπx.

a Fourier cosine series. The coefficients are obtained by

a0 =
2
1

∫ 1

0

(
x− 1

2
x2

)
, dx = x2 − 1

3
x3

∣∣∣∣
1

0
=

2
3

,

an =
2
1

∫ 1

0
(x− 1

2
x2) cos nπx dx

=
[−2(x− 1)

n2π2 cos nπx−
(

(2x− x2)
nπ

+
2

n3π3

)
sin nπx

]∣∣∣∣
1

0

= − 2
n2π2 .

Thus, we obtain the solution for v as

v(x, t) =
1
3
− 2

π2

∞

∑
n=1

1
n2 e−n2π2t cos nπx.

and this, together with the transformation (4.55) gives

u(x, t) =
1
2
(x2 + 2t)− x +

1
3
− 2

π2

∞

∑
n=1

1
n2 e−n2π2t cos nπx. (4.62)

Figure 6 shows plots at time t = 0.01, 0.5, 1.0 and 1.5. It is interesting to

note that at the left boundary ux = −1 and since the flux φ = −kux implies

that φ = k > 0 which gives that the flux is position and that heat is being

added at the left boundary. Hence the profile increase at the left while

insulated at the right boundary (no flux).
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Figure 6. The solution (4.62) at time t = 0, 1 and 2.

A natural question is, can we transform

ut = uxx, 0 < x < L, t > 0, (4.63)

u(x, 0) = f (x), u(0, t) = p(t), u(L, t) = q(t) (4.64)

to a problem with standard boundary conditions. The answer is yes. We

seek a transformation of the form

u = v + A(t)x + B(t) (4.65)

as to transform the nonstandard boundary conditions to standard ones.

On substitution of the u and v boundary conditions, we obtain

p(t) = 0 + A(t)0 + B(t), q(t) = 0 + A(t)L + B(t) (4.66)

and solving for A(t) and B(t) gives

A(t) =
q(t)− p(t)

L
, B(t) = p(t), (4.67)

which results in the transformation

u = v +
q(t)− p(t)

L
x + p(t)

= v + q(t)
x
L

+ p(t)
(L− x)

L
. (4.68)

However in doing so, we change not only the original equation but also

the initial condition. They becomes, respectively

vt = vxx − q′(t)
x
L

+ p′(t)
(L− x)

L
,

v(x, 0) = f (x)− q(0)
x
L
− p(0)

(L− x)
L

.
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The new initial condition doesn’t pose a problem but how do we solve the

heat equation with a term added to the equation.

4.1.2 Nonhomogeneous equations

We now focus our attention to solving the heat equation with a source

term

ut = uxx + Q(x), 0 < x < L, t > 0, (4.69)

u(0, t) = 0, u(L, t) = 0, u(x, 0) = f (x).

To investigate this problem, we will considered a particular example where

L = 2, f (x) = 2x − x2 and Q(x) = 1− |x − 1|. If we were to consider this

problem without a source term we would have solutions of the form

u(x, t) =
∞

∑
n=1

Tn(t) sin
nπx

2
, (4.70)

where

Tn(t) =
16(1− (−1)n)

n3π3 e−
n2π2

4 t (4.71)

We note that even if this Tn wasn’t known, we could find it as substitution

of (4.70) into the heat equation and isolating coefficients of sin nπx
2 , would

lead to

T′n(t) = −n2π2

4
Tn(t),

leading to the solution (4.71). For the problem with a source term we look

for solutions of the same form i.e. (4.70). However, in order that this tech-

nique works, it is necessary to expand the source term also in terms of a

Fourier sine series, i.e.

Q(x) =
∞

∑
n=1

qn sin
nπx

2
. (4.72)

For

Q(x) =

{
x if 0 < x < 1,
2− x if 1 < x < 2,

(4.73)
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where

qn =
∫ 2

0
Q(x) sin

nπx
2

dx.

=
∫ 1

0
x sin

nπx
2

dx +
∫ 2

x
(2− x) sin

nπx
2

dx,

=
[

4
n2π2 sin

nπx
2

− 2xnπ cos
nπx

2

]∣∣∣∣
1

0

+
[
− 4

n2π2 sin
nπx

2
+

2x4

nπ
cos

nπx
2

]∣∣∣∣
2

1
,

=
8

n2π2 sin
nπx

2
. (4.74)

Substituting both (4.70) and (4.72) into (4.69) gives

∞

∑
n=1

T′n(t) sin
nπx

2
=

∞

∑
n=1

−
(nπx

2

)2
Tn(t) sin

nπx
2

+
∞

∑
n=1

qn sin
nπx

2
,

and re-grouping and isolating the coefficients of sin nπx
2 gives

T′n(t) +
n2π2

4
Tn(t) = qn, (4.75)

a linear ODE in Tn(t)! On solving (4.75) we obtain

Tn(t) =
4

n2π2 qn + bne−( nπ
2 )2t,

giving the final solution

u(x, t) =
∞

∑
n=1

(
4

n2π2 qn + bne−( nπ
2 )2t

)
sin

nπx
2

. (4.76)

Imposing the initial condition gives (4.70)

2x− x2 =
∞

∑
n=1

(
4

n2π2 qn + bn

)
sin

nπx
2

.

If we set

cn =
4

n2π2 qn + bn,

then we have

2x− x2 =
∞

∑
n=1

cn sin
nπx

2
.
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a regular Fourier sine series. Therefore

cn =
∫ 2

0

(
2x− x2

)
sin

nπx
2

dx.

=
16

n3π3

(
1− cos

nπ

2

)
, (4.77)

which in turn, gives

bn = cn − 4
n2π2 qn,

and finally, the solution as

u(x, t) =
∞

∑
n=1

(
4

n2π2 qn +
(

cn − 4
n2π2 qn

)
e−( nπ

2 )2t
)

sin
nπx

2
, (4.78)

where qn and cn are given in (4.74) and (4.77), respectively. Typical plots

are given in figure 7 at times t = 0, 1, 2 and 3.

3t =

2t =

1t =

0t =
y

x

20 1

0.5

1.0

0.0

Figure 7. The solution (4.78) at time t = 0, 1, 2 and 3.

It is interesting to note that if we let t → ∞ the solution approaches the

same curve at t = 3. This is what is called steady state (no changes in

time). It is natural to ask “Can we find this steady state solution.?” The

answer is yes. For the steady state, ut → 0 as t → ∞ and the original PDE

becomes

uxx + Q(x) = 0. (4.79)

Integrating twice with Q(x) given in (4.73) gives

u =

{
− x3

6 + c1x + c2 if 0 < x < 1,
x3

6 − x2 + k1x + k2 if 1 < x < 2,
(4.80)
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where c1, c2, k1 and k2 are constants of integration. Imposing that the solu-

tion and its first derivative are continuous at x = 1 and that the solution is

zer0 at the endpoints gives

c1 − c1 + 1 = 0, c1 + c2 − k1 − k2 +
2
3

= 0,

c2 = 0, 2k1 + k2 − 8
3

= 0,

which gives, upon solving

c1 =
1
2

, c2 = 0, k1 =
3
2

, k2 = −1
3

(4.81)

This, in turn gives the steady state solution as

u =

{
− x3

6 + x
2 if 0 < x < 1,

x3

6 − x2 + 3x
2 − 1

3 if 1 < x < 2.
(4.82)

4.1.3 Equations with a solution dependent source term

We now consider the heat equation with a solution dependent source term.

For simplicity we will consider a source term that is linear. Take, for ex-

ample

ut = uxx + αu, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, u(x, 0) = x− x2, (4.83)

where α is some constant. We could try a separation of variables to ob-

tain solutions for this problem, but for more complicated source terms like

Q(x, t)u, a separation of variables is unsuccessful. Therefore, we try a dif-

ferent technique. Here we will try and transform the PDE to one that has

no source term. In attempting to do so, we seek a transformation of the

form

u(x, t) = A(x, t)v (4.84)

and ask “Is is possible to find A such that the source term in (4.83) can be

removed?” Substituting of (4.84) in (4.83) gives

Avt + Atv = Avxx + 2Axvx + Axxv + αAv,
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and dividing by A and expanding and regrouping gives

vt = vxx + 2
Ax

A
vx +

(
Axx

A
− At

A
+ α

)
v.

In order to target the standard heat equation, we choose

Ax = 0,
Axx

A
− At

A
+ α = 0. (4.85)

From the first we obtain that A = A(t) and from the second we obtain

A′ = αA which has the solution A(t) = A0eαt for some constant A0. The

boundary conditions becomes

u(0, t) = 0 ⇒ A0eαtv(0, t) = 0 ⇒ v(0, t) = 0,

v(1, t) = 0 ⇒ A0eαtv(1, t) = 0 ⇒ v(1, t) = 0,

so the boundary conditions become unchanged. Next, we consider the

initial condition, so

u(x, 0) = x− x2 ⇒ A0eα0v(x, 0) = 0 ⇒ A0v(x, 0) = x− x2,

and as to leave the initial condition unchanged, we choose A0 = 1. Thus,

under the transformation

u = eαtv (4.86)

the problem (4.83) becomes

vt = vxx, 0 < x < 1, t > 0,

v(x, 0) = 0, v(1, t) = 0, v(x, 0) = x− x2, (4.87)

This particular problem was considered at the beginning of this chapter,

(4.1) where the solution was given in (4.26), namely

v(x, t) =
4

π3

∞

∑
n=1

1− (−1)n

n3 e−n2π2t sin nπx,

and so, from (4.86) we obtain the solution of (4.83) as

u(x, t) =
4

π3 eαt
∞

∑
n=1

1− (−1)n

n3 e−n2π2t sin nπx. (4.88)
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Figure 8 shows plots at times t = 0, 0.1 and 0.2 when α = 5 and 12. It

is interesting to note that in the case where α = 5, the diffusion is slower

in comparison with no source term (i.e α = 0 see Figure 1) and there is no

diffusion at all when α = 12.
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Figure 8. The solution (4.88) of the heat equation with a source (4.83) with α = 5
and α = 12.

It is natural to ask, for what value of α do we achieve a steady state

solution. To answer this consider the first few terms of the solution (4.88)

u =
8

π3 eαt
(

e−π2t sin πx +
1
27

e−9π2t sin 3πx + . . .
)

. (4.89)

Now clearly the exponential terms in (·) will decay to zero with the first

term decaying the slowest. Therefore, it is the balance between eαt and

e−π2t which determine whether the solution will decay to zero or not. It is

equality α = π2 that gives the steady state solution.

Example 6

Solve

ut = uxx + αu, 0 < x < 2, t > 0

u(x, 0) = 4x− x3 ux(0, t) = 0, ux(2, t) = 0. (4.90)

Established already is that the transformation (4.86) will transform the

equation to the heat equation and will leave the initial condition unchanged.
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It is now necessary to determine what happens to the boundary condi-

tions. Using (4.86) we have

ux(0, t) = 0 ⇒ A0eαtvx(0, t) = 0 ⇒ vx(0, t) = 0, (4.91)

vx(2, t) = 0 ⇒ A0eαtvx(2, t) = 0 ⇒ vx(2, t) = 0, (4.92)

and so the insulted boundary conditions also remain insulated! Thus, the

problem (4.90) becomes

vt = vxx, 0 < x < 2, t > 0

v(x, 0) = 4x− x2, vx(0, t) = 0, vx(2, t) = 0. (4.93)

Using a separation of variables and imposing the boundary conditions

gives (see example 1)

v =
1
2

a0 +
∞

∑
n=1

ane−
n2π2

4 t cos
nπ

2
x, (4.94)

where

a0 =
2
2

∫ 2

0
(4x− x3) dx =

[
2x2 − x4

4

]∣∣∣∣
2

0
= 4,

an =
2
2

∫ 2

0
(4x− x3) cos

nπ

2
x dx (4.95)

=
[(

2(4x− x3)
nπ

+
48

n3π3

)
sin

nπ

2
x +

(
4(4− 3x2)

n2π2 +
96

n4π4

)
cos

nπ

2
x
]∣∣∣∣

2

0

= − 16
n2π2 −

96
n4π4 +

(
6

nπ
+

48
n3π3

)
sin

nπ

2
+

(
4

n2π2 +
96

n4π4

)
cos

nπ

2
.

Together with the transformation (4.86), the solution of (4.90) is

u = 2eαt + eαt
∞

∑
n=1

ane−
n2π2

4 t cos
nπ

2
x, (4.96)

where an is given in (4.95). Figure 9 show plots at t = 0, 0.2, 0.4 and 0.6

when α = −2 and 2. It is interesting to note that the sign of α will deter-

mine whether the solution will grow or decay exponentially.
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Figure 9. The solution (4.96) of the heat equation with a source (4.90) with no
flux boundary condition with α = −2 and α = 2.

4.1.4 Equations with a solution dependent convective term

We now consider the heat equation with a solution dependent linear con-

vection term, i.e.

ut = uxx + β ux, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0, u(x, 0) = x− x2, (4.97)

where β is some constant. We consider the same initial and boundary

conditions as in the previous section as it provides a means of comparing

the two respective problems. Again, we could try a separation of variables

to obtain solutions for this problem, but for more complicated convection

terms like P(x, t)ux, a separation of variable is unsuccessful. Therefore,

we again try a different technique. We will try and transform the PDE

to one that has no convection term. In attempting to do so, we seek a

transformation of the form

u(x, t) = A(x, t)v (4.98)

and ask “Is is possible to find A such that the convection term can be re-

moved?” Substituting of (4.98) in (4.97) gives

Avt + Atv = Avxx + 2Axvx + Axxv + β (Avx + Axv) ,
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and dividing by A and expanding and regrouping gives

vt = vxx +
2Ax + βA

A
vx +

Axx − At + βAx

A
v. (4.99)

In order to target the standard heat equation, we choose

2Ax + βA = 0, Axx − At + βAx = 0. (4.100)

From the first we obtain that A(x, t) = C(t)e−
1
2 βx and from the second

we obtain C′ + β2

4 C = 0 which has the solution C(t) = A0e−
1
4 β2t for some

constant A0. This then gives

A(x, t) = A0e−
1
2 βx− 1

4 β2t (4.101)

The boundary conditions becomes

u(0, t) = 0 ⇒ C0e−
1
4 β2tv(0, t) = 0 ⇒ v(0, t) = 0, (4.102)

v(1, t) = 0 ⇒ C0e−
1
2− 1

4 β2tv(1, t) = 0 ⇒ v(1, t) = 0, (4.103)

so the boundary conditions become unchanged. Next, we consider the

initial condition, so

u(x, 0) = x− x2 ⇒ v(x, 0) = (x− x2)e
1
2 βx, (4.104)

where we have chosen A0 = 1. So here, the initial condition actually

changes. Thus, under the transformation

u = e−
1
2 βx− 1

4 β2tv, (4.105)

the problem (4.97) becomes

vt = vxx, 0 < x < 1, t > 0,

v(x, 0) = 0, v(1, t) = 0, v(x, 0) = (x− x2)e
1
2 βx. (4.106)

As in the previous section, the solution is given by

v(x, t) =
∞

∑
n=1

bne−n2π2t sin nπx, (4.107)
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where bn is now given by

bn =
2
1

∫ 1

0
(x− x2)e

1
2 βx sin nπx dx, (4.108)

and from (4.105)

u(x, t) = e−
1
2 βx− 1

4 β2t
∞

∑
n=1

bne−n2π2t sin nπx, (4.109)

At this point we consider two particular examples: β = 6 and β = −12.

For β = 6

bn = 2
∫ 1

0
(x− x2)e3x sin nπx dx

= −4nπ
27 + n2π2 + 2n2π2e3 cos nπ

(9 + n2π2)3 . (4.110)

For β = −12

bn = 2
∫ 1

0
(x− x2)e−6x sin nπx dx

= 2nπ
7n2π2 + 108 + (5n2π2 + 324)e−6 cos nπ

(36 + n2π2)3 . (4.111)

The respective solutions for each are

u(x, t) = 4πe−
1
2 βx− 1

4 β2t (4.112)

×
∞

∑
n=1

n
27 + n2π2 + 2n2π2e3 cos nπ

(9 + n2π2)3 e−n2π2t sin nπx,

u(x, t) = 2πe−
1
2 βx− 1

4 β2t (4.113)

×
∞

∑
n=1

n
7n2π2 + 108 + (5n2π2 + 324)e−6 cos nπ

(36 + n2π2)3 e−n2π2t sin nπx.

Figure 10 shows graphs at a variety of times for β = 6 and β = −12.
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Figure 10. The solution (4.112) of the heat equation with convection with fixed
boundary conditions with β = 6 and β = −12.

Example 7

As a final example, we consider

ut = uxx + βux, 0 < x < 2, t > 0 (4.114)

subject to

u(x, 0) = 4x− x3 ux(0, t) = 0, ux(2, t) = 0. (4.115)

This problem is like problem 6 but with insulated boundary conditions.

Here, we will simply transform the problem to one that is in standard form

as to contrast the differences between the two problems. The transforma-

tion (4.105) transforms (4.114) to the heat equation so we will primarily fo-

cus on the boundary and initial conditions. For the boundary conditions,

upon differentiating (4.105) with respect to x gives

ux = e−
1
2 βx− 1

4 β2tvx − β

2
e−

1
2 βx− 1

4 β2tv, (4.116)

and so

ux(0, t) = 0 ⇒ vx(0, t)− β

2
v(0, t) = 0, (4.117)

ux(2, t) = 0 ⇒ vx(2, t)− β

2
v(2, t) = 0. (4.118)
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Thus, the insulated boundary condition become radiating boundary con-

ditions. As for the initial condition

u(x, 0) = 4x− x3 ⇒ v(x, 0) = (4x− x3)e
1
2 βx, (4.119)

so again, the initial condition changes.

4.2 Laplace’s equation

The two dimensional Laplace’s equation is

uxx + uyy = 0 (4.120)

We will show that a separation of variables also works for this equation

As an example consider the boundary conditions

u(x, 0) = 0, u(x, 1) = x− x2 (4.121a)

u(0, y) = 0, u(1, 0) = 0. (4.121b)

If we assume separable solutions of the form

u(x, y) = X(x)Y(y), (4.122)

then substituting this into (4.120) gives

X′′Y + XY′′ = 0. (4.123)

Dividing by XY and expanding gives

X′′

X
+

Y′′

Y
= 0, (4.124)

and since each term is only a function of x or y, then each must be constant

giving
X′′

X
= λ,

Y′′

Y
= −λ. (4.125)

From the first of (4.121a) and both of (4.121b) we deduce the boundary

conditions

X(0) = 0, X(1) = 0, Y(0) = 0. (4.126)
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The remaining boundary condition in (4.121a) will be used later. As seen

the in previous section, in order to solve the X equation in (4.125) subject

to the boundary conditions (4.126), it is necessary to set λ = −k2. The X

equation (4.125) as the general solution

X = c1 sin kx + c2 cos kx (4.127)

To satisfy the boundary conditions in (4.126) it is necessary to have c2 = 0

and k = nπ, k ∈ Z+ so

X(x) = c1 sin nπx. (4.128)

From (4.125), we obtain the solution to the Y equation

Y(y) = c3 sinh nπy + c4 cosh nπy (4.129)

Since Y(0) = 0 this implies c4 = 0 so

X(x)Y(y) = an sin nπx sinh nπy (4.130)

where we have chosen an = c1c3. Therefore, we obtain the solution to

(4.120) subject to three of the four boundary conditions in (4.121)

u =
∞

∑
n=1

an sin nπx sinh nπy. (4.131)

The remaining boundary condition is (4.121a) now needs to be satisfied,

thus

u(x, 1) = x− x2 =
∞

∑
n=1

an sin nπx sinh nπ. (4.132)

This looks like a Fourier sine series and if we let An = an sinh nπ, this

becomes
∞

∑
n=1

An sin nπx = x− x2. (4.133)

which is precisely a Fourier sine series. The coefficients An are given by

An =
2
1

∫ 2

0

(
x− x2

)
sin nπx dx

=
16

n3π3 (1− cos nπ), (4.134)
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and since An = an sinh nπ, this gives

an =
4(1− (−1)n)
n3π3 sinh nπ

. (4.135)

Thus, the solution to Laplace’s equation with the boundary conditions

given in (4.121) is

u(x, y) =
4

π3

∞

∑
n=1

1− (−1)n

n3 sin nπx
sinh nπy
sinh nπ

. (4.136)

Figure 11 show both a top view and a 3− D view of the solution.
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Figure 11. The solution (4.120) with the boundary conditions (4.121)

In general, using separation of variables, the solution of

uxx + uyy = 0, 0 < x < Lx, 0 < y < Ly, (4.137)

subject to

u(x, 0) = 0, u(x, 1) = f (x),

u(0, y) = 0, u(1, y) = 0,

is

u =
∞

∑
n=1

bn sin
nπx
Lx

sinh nπy
Ly

sinh nπ
Ly

, (4.139)
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where

bn =
2
Lx

∫ Lx

0
f (x) sin

nπx
Lx

dx. (4.140)

In the next three examples, we will construct solutions of Laplace’s equa-

tion when we have nonzero boundary condition on each of the remaining

three sides of the region 0 < 1, 0 < y < 1.

Example 8

Solve

uxx + uyy = 0, (4.141)

subject to

u(x, 0) = 0, u(x, 1) = 0, (4.142a)

u(0, y) = 0, u(1, y) = y− y2. (4.142b)

Assume separable solutions of the form

u(x, y) = X(x)Y(y) (4.143)

Then substituting this into (4.141) gives

X′′Y + XY′′ = 0. (4.144)

Dividing by XY and expanding gives

X′′

X
+

Y′′

Y
= 0, (4.145)

from which we obtain

X′′

X
= λ,

Y′′

Y
= −λ (4.146)

From (4.186) we deduce the boundary conditions

X(0) = 0, Y(0) = 0, Y(1) = 0. (4.147)
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The remaining boundary condition in (4.186) will be used later. As seen

the in previous problem, in order to solve the Y equation in (4.146) subject

to the boundary conditions (4.147), it is necessary to set λ = k2. The Y

equation (4.146) as the general solution

Y = c1 sin ky + c2 cos ky (4.148)

To satisfy the boundary conditions in (4.147) it is necessary to have c2 = 0

and k = nπ so

Y(y) = c1 sin nπy. (4.149)

From (4.146), we obtain the solution to the X equation

X(x) = c3 sinh nπx + c4 cosh nπx (4.150)

Since X(0) = 0 this implies c4 = 0. This gives

X(x)Y(y) = an sinh nπx sin nπy (4.151)

where we have chosen an = c1c3. Therefore, we obtain

u =
∞

∑
n=1

an sinh nπx sin nπy. (4.152)

The remaining boundary condition is (4.186) now needs to be satisfied,

thus

u(1, y) = y− y2 =
∞

∑
n=1

an sinh nπ sin nπy. (4.153)

If we let An = an sinh nπ, this becomes

∞

∑
n=1

An sin nπy = y− y2. (4.154)

Comparing with previous problem, we find that interchanging x and y

interchanges the two problems and thus we con conclude that

An =
16

n3π3 (1− cos nπ), (4.155)
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and further that the solution to Laplace’s equation with the boundary con-

ditions given in (4.141) subject to (4.186) is

u =
4

π3

∞

∑
n=1

1− (−1)n

n3
sinh nπx
sinh nπ

sin nπy. (4.156)

Figure 12 show both a top view and a 3− D view of the solution. In com-

paring the solutions (4.136) and (4.156) shows that if we interchange x and

y they are the same. This should not be surprising because if we con-

sider Laplace equations with the boundary conditions given in (4.121) and

(4.186), that if we interchange x and y, the problems are transformed to

each other.

In general, using separation of variables, the solution of

uxx + uyy = 0, 0 < x < Lx, 0 < y < Ly (4.157)

subject to

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = 0, u(1, y) = g(y).

is

u =
∞

∑
n=1

bn
sinh nπx

Lx

sinh nπ
Lx

sin
nπy
Ly

(4.159)

where

bn =
2
Ly

∫ Ly

0
g(y) sin

nπy
Ly

dy (4.160)

Example 9

Solve

uxx + uyy = 0 (4.161)

subject to

u(x, 0) = x− x2, u(x, 1) = 0 (4.162a)

u(0, y) = 0, u(1, y) = 0. (4.162b)
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Again, assuming separable solutions of the form

u(x, y) = X(x)Y(y) (4.163)

leads to

X′′Y + XY′′ = 0, (4.164)

when substituted into (4.161). Dividing by XY and expanding gives

X′′

X
+

Y′′

Y
= 0. (4.165)

Since each term is only a function of x or y then each must be constant

giving
X′′

X
= λ,

Y′′

Y
= −λ (4.166)

From the first of (4.162a) and both of (4.162b) we deduce the boundary

conditions

X(0) = 0, X(1) = 0, Y(1) = 0, (4.167)

noting that the last boundary condition is different than the boundary con-

dition considered at the beginning of this section (i.e. Y(0) = 0). The re-

maining boundary condition in (4.162a) will be used later. In order to solve

the X equation in (4.166) subject to the boundary conditions (4.167), it is

necessary to set λ = −k2. The X equation (4.166) as the general solution

Y = c1 sin kx + c2 cos kx (4.168)

To satisfy the boundary conditions in (4.167) it is necessary to have c2 = 0

and k = nπ so

X(x) = c1 sin nπx. (4.169)

From (4.166), we obtain the solution to the Y equation

Y(y) = c3 sinh nπy + c4 cosh nπy (4.170)

Since Y(1) = 0 this implies

c3 sinh nπ + c4 cosh nπ = 0 ⇒ c4 = −c2
sinh nπ

cosh nπ
. (4.171)
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From (4.172) we have

Y(y) = c3 sinh nπy− c3 cosh nπy
sinh nπ

cosh nπ

= −c3
sinh nπ(1− y)

sinh nπ
. (4.172)

so

X(x)Y(y) = an sin nπx sinh nπ(1− y) (4.173)

where we have chosen an = −c1c3/ sinh nπ. Therefore, we obtain

u =
∞

∑
n=1

an sin nπx sinh nπ(1− y). (4.174)

The remaining boundary condition is (4.162a) now needs to be satisfied,

thus

u(x, 0) = x− x2 =
∞

∑
n=1

an sin nπx sinh nπ. (4.175)

At this point we recognize that this problem is now identically to the first

problem in this section where we obtained

an =
4(1− (−1)n)
n3π3 sinh nπ

(4.176)

so the solution to Laplace’s equation with the boundary conditions given

in (4.179) is

u(x, y) =
4

π3

∞

∑
n=1

1− (−1)n

n3 sin nπx
sinh nπ(1− y)

sinh nπ
. (4.177)

Figure 12 show both a top view and a 3− D view of the solution.

In general, using separation of variables, the solution of

uxx + uyy = 0, 0 < x < Lx, 0 < y < Ly (4.178)

subject to

u(x, 0) = f (x), u(x, 1) = 0

u(0, y) = 0, u(1, y) = 0.
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is

u =
∞

∑
n=1

bn sin
nπx
Lx

sinh nπ(1−y)
Ly

sinh nπ
Ly

(4.180)

where

bn =
2
Lx

∫ Lx

0
f (x) sin

nπx
Lx

dx (4.181)

Example 10

As the final example, we consider

uxx + uyy = 0 (4.182)

subject to

u(x, 0) = 0, u(x, 1) = 0 (4.183a)

u(0, y) = y− y2, u(1, y) = 0. (4.183b)

We could go through a separation of variables to obtain the solution but

we can avoid many of the steps by considering the previous three prob-

lems. One will notice to transform between the first and second problem,

the variables x and y only need to be interchanged. This can also be seen in

their respective solutions. One will also notice to transform between this

problem and problem 9, we only need to transform x and y again. Thus,

to obtain the solution for this final problem, we will transform the solution

given in (4.177) giving

u(x, y) =
4

π3

∞

∑
n=1

1− (−1)n

n3
sinh nπ(1− x)

sinh nπ
sin nπy. (4.184)

In general, using separation of variables, the solution of

uxx + uyy = 0, 0 < x < Lx, 0 < y < Ly (4.185)

subject to

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = g(y), u(1, y) = 0.
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is

u =
∞

∑
n=1

bn
sinh nπ(1−x)

Ly

sinh nπ
Ly

sin
nπy
Ly

. (4.187)

where

bn =
2
Ly

∫ Ly

0
g(y) sin

nπy
Ly

dy (4.188)


