Thermal Agents:
Cold and Heat

Physical Principles of Thermal Transfer

- **Specific Heat**
 - Specific heat is the amount of energy required to raise the temperature of a given weight of a material by a given number of degrees (F or C)
 - Materials with a high specific heat hold more energy than materials with a low specific heat
 - Agents with higher specific heat are applied at lower temperatures
 - Ex – Paraffin bath is applied at lower temperature than hot pack

- **Modes of Heat Transfer**
 - Conduction: Heat Transfer by Direct Contact Such as Hot Packs and Cold Packs
 - Rate of Heat Transfer by Conduction
 - \[\text{[(contact area) x (thermal conductivity) x (temp difference)] / tissue thickness} \]
 - Thermal conductivity = rate at which a material transfers heat
Physical Principles of Thermal Transfer

Modes of Heat Transfer

Guidelines for Heat Transfer by Conduction
- The greater the temperature difference, the faster the rate of heat transfer
- Materials with higher thermal conductivity transfer heat more rapidly than those with lower thermal conductivity
- The larger the area of contact, the greater the total heat transfer
- The thicker the tissue, the slower the rate of heat transfer

Convection: Heat Transfer by Circulation of a Medium of a Different Temperature Such as Fluidotherapy, Whirlpool, Blood Circulation
- Convection – heat transfer due to direct contact between a circulating medium and another material of a different temperature
Physical Principles of Thermal Transfer

- Modes of Heat Transfer
 - Conversion: Conversion from One Type of Energy to Another Such as Ultrasound, Diathermy, and Metabolism
 - Conversion of a non-thermal form of energy (physical/mechanical, electrical, or chemical) to a thermal form of energy

- Radiation: Exchange of Energy Directly without an Intervening Medium Such as Infrared Lamp
 - Radiation – transfer of energy without direct contact

- Evaporation: Absorption of Energy as the Result of Conversion of a Material from a Liquid to a Vapor State Such as Vapocoolant Sprays
 - During evaporation, energy is absorbed when a solid is converted to a liquid or a liquid is converted to a gas/vapor (sweating)
 - Vapocoolant sprays result in cooling of an area due to evaporation
Vapocoolant Spray

Cold- Cryotherapy

- Hemodynamic Effects
 - Initial Decrease in Blood Flow
 - Later Increase in Blood Flow
 - Ice bath results
 - Cold induce vasodilatation
 - Hunting response
Cold- Cryotherapy

- Neuromuscular Effects
 - Decreased Nerve Conduction Velocity
 - As temperature decreases, nerve conduction velocity decreases

- Increased Pain Threshold
 - Gate Control Theory
 - Cold increases activity of the non-nociceptive fibers causing inhibition of nociceptive fibers

- Altered Muscle Strength
 - Short cooling can result in increased strength
 - Long cooling can result in decreased strength
Cold- Cryotherapy

- Neuromuscular Effects
 - Decreased Spasticity
 - Decrease in motor neuron & muscle spindle activity
 - Facilitation of Muscle Contraction
 - Facilitates motor neuron activity by stimulating cutaneous sensory receptors
 - Lasts for only a short period of times (seconds)

- Metabolic Effects
 - Decreased Metabolic Rate
 - "Slows" or controls inflammation
 - Can slow healing
 - Cryotherapy is used for management of inflammatory diseases such as OA and RA

- Uses of Cryotherapy
 - Inflammation Control
 - Slows metabolism
 - Reduces edema
 - Reduces pain
Cold- Cryotherapy

- Uses of Cryotherapy
 - Edema Control
 - Due to vasoconstriction

- Uses of Cryotherapy
 - Pain Control
 - Gate Control
 - Theory - Cold increases activity of the cutaneous thermal receptors (non-nociceptive fibers) causing inhibition of nociceptive fibers

- Uses of Cryotherapy
 - Modification of Spasticity
 - Decrease in reflexes
 - Duration - 5 – 30 mins
 - 30 mins for severe spasticity
Cold-Cryotherapy

- **Uses of Cryotherapy**
 - **Facilitation**
 - Quick icing may be used to elicit desired motor patterns

- **Cryokinetics and Cryostretch**
 - Cryotherapy is used to minimize sensation (numbness) prior to exercise/stretching to decrease pain perception

Cold-Cryotherapy

- **Contraindications for Cryotherapy**
 - **Cold Hypersensitivity**
 - Elevated patches which are red or pale
 - **Cold Intolerance**
 - **Cryoglobulinemia** – aggregation of serum proteins limiting circulation
 - Associated w/ lupus & RA
Cold Hypersensitivity

Cold-Cryotherapy

- Contraindications for Cryotherapy
 - Raynaud’s Disease/Phenomenon
 - Sudden pallor & cyanosis followed by redness (mainly seen in the distal extremities)
 - Over Regenerating Peripheral Nerves
 - Over an Area With Circulatory Compromise or Peripheral Vascular Disease

Raynaud’s Disease/Phenomenon
Cold-Cryotherapy

- Precautions for Cryotherapy
 - Apply Cryotherapy with Caution:
 - Over a Superficial Main Branch of a Nerve
 - Over an Open Wound
 - When Treating Patients with Hypertension
 - When Treating Patients with Poor Sensation or Mentation
 - When Treating Very Young and Very Old Patients

Cold-Cryotherapy

- Adverse Effects of Cryotherapy
 - Tissue Death
 - Frostbite
 - Nerve Damage
 - Unwanted Vasodilatation

Cold-Cryotherapy

- Application Techniques
 - Sequence of Sensations in Response To Cryotherapy
 - Intense Cold
 - Burning
 - Aching
 - Analgesia and numbness
Heat-Thermotherapy

- Effects of Heat
 - Hemodynamic Effects
 - Vasodilatation
 - Neuromuscular Effects
 - Changes in Nerve Conduction Velocity and Firing Rate
 - Increased Pain Threshold
Heat-Thermotherapy

- Effects of Heat
 - Neuromuscular Effects
 - Changes in Muscle Strength

- Effects of Heat
 - Metabolic Effects
 - Increased Metabolic Rate

- Effects of Heat
 - Altered Tissue Extensibility
 - Increased Collagen Extensibility
Heat-Thermotherapy
- Uses of Superficial Heat
 - Pain Control

Heat-Thermotherapy
- Uses of Superficial Heat
 - Increased ROM and Decreased Joint Stiffness

Heat-Thermotherapy
- Uses of Superficial Heat
 - Accelerated Healing
Heat-Thermotherapy

- Uses of Superficial Heat
 - Infrared Radiation for Psoriasis and Dermal Ulcers

Heat-Thermotherapy

- Contraindications for the Use of Thermotherapy
 - Acute Injury or inflammation
 - Recent or Potential Hemorrhage
 - Thrombophlebitis
Heat-Thermotherapy

Contraindications for the Use of Thermotherapy
- Impaired Sensation
- Impaired Mentation
- Malignancy
- Infrared Irradiation of the Eyes

Precautions for the Use of Thermotherapy
- Pregnancy
- Impaired Circulation
- Poor Thermal Regulation
- Edema

Precautions for the Use of Thermotherapy
- Cardiac Insufficiency
- Metal in the Area
- Over an Open Wound
- Over Areas Where Topical Counterirritants Have Recently Been Applied
Heat-Thermotherapy

- Adverse Effects Of Thermotherapy
 - Burns
 - Fainting
 - Bleeding
 - Skin and Eye Damage from IR Radiation