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What is a Quadratic Form?

m A function

- i i
f= E Nivyiseonsin) X1 X5 770 X" € R[X1,X2, ..., Xn]-
gt tin=2

m Risaring

m R[x1,X2, ..., Xn] is the polynomial ring over R.
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f = [a, b, *]p, what is D?77

m D = Disc(f) is the discriminant of f
D = Disc(f) := b*> — 4ac

m f is uniquely defined by a, b and either ¢ or D.
m ...At least if R is an integral domain, char(R) # 2.
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Some Algebra Review

m A ring is an additive group and multiplicative semigroup such
that the operations are distributive.

m An integral domain is commutative ring with no zero divisors.

m The characteristic of a ring with [multiplicative] identity is the
smallest positive n such that

14+1+---+1=0
—_—
n times
m A semigroup is a set of elements with an operation which is
associative (e.g. (a-b)-c=a-(b-¢))
m A group is a semigroup with an identity (e.g. a+ 0 =0) and
inverses (e.g. a+ (—a) = 0).
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Some Algebra Review

m An ideal of a commutative ring is a subring which is closed
under multiplication of ring elements.

A principal ideal of a ring is an ideal which is generated by a
single element: | = (a) for some a € R.

A Principal Ideal Domain is an integral domain in which every
ideal is principal.

... They're really nice

...Unfortunately
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Some Algebra Review

m GLy(R) is the group of 2 x 2 with entries in R which are
invertible in R2*2,

m SLy(R) is the group of 2 x 2 with entries in R and
determinant 1 (and thus is invertible in R2*2).

m (a1,a,...,a)p = {ain +axrn+---+ an|ri € R} is the ideal
generated by {a1, a2, ..., a/}.
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Methodology

Choose R.

Do stuff.

Fail to do stuff.

Add properties to R.
Go to step 2.
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The [primary] sources of insight

My Advisers
Primes of The Form x + ny?, by David Cox.

...an overpriced Wiley book with a 6 page eratta

...that's actually quite good.



Overview of my work

Q(D)
[ [

Q(D)/ v ———— 1(0)/P(O)

1(0)

m Q(D) is the set of all primitive forms with discriminant D.

m Q(D)/ « is Q(D) modulo «~, where «~ denotes proper
equivalence.

m /(O) is the group of all proper fractional ideals of a quadratic
extension of F[T]

m /(O)/P(0O) is the ideal class group of the same quadratic
extension of F[T]
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Setup (for now)

m A is a principle ideal domain
m 271 exists and is in A.

m D will be reserved for the discriminant of our forms.
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More on Q(D)

m Q(D) is the set of all primitive forms with discriminant D.
m ..So if [a, b, c] € Q(D), then b?> — 4ac = D.
m If (a,b,c), = (1) 4, then f is said to be primitive.
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More on Q(D)/ «~

m Q(D)/ ~= Q(D) modulo «~, where f «~ g is an equivalence
relation called proper equivalence.

miIff=[a b cl,g=[a,b,c] € Q(D), then f is said to be
properly equivalent to g if there is a v € SL(A) so that
=g

m ..where vf = [I: Z] f:=f(px+qy,rx+sy)=

[f(p,r),2apq + bar + bps + 2crs, f(q, s)].
m Proper equivalence is equivalent to saying that f and g
properly represent the same things

m _If f(o,8) = mand (a, 3) 4 = (1) 4, then m is said to be
properly represented by f.




More on Q(D)/ «~

Q(D)/ « is an abelian group.
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m Given our operation, associative, identity, and inverses are all
mostly easy.

m Showing that the operation is well defined is not quite so easy.

m ...What is this operation?



An operation on Q(D)/ «

m To define an operation, we will use the following proposition:

Proposition

Let De A, M e AN {0},C1,C2 € Q(D)/ «~. Then there are
f1 € C1 and f, € C, such that

ﬁ. — [ala B7a2c]7 f2 = [325 B731(—.]

where a;, B, C € A, a1a» # 0, (a1,a2)4 = (1) 4, and
(ara2, M) , = (1) 4. (Forms that look like this are called
concordant)
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An operation on Q(D)/ «

m Let [[a, b,dc]],[[d, b, ac]] € Q(D)/

m Define [[a, b, a'c]][[2/, b, ac]] := [[ad’, b, c]].

m ...which gives us a nice little operation to prove
well-definedness of.

m ...which of course I'm not going to do here
m ...for the health and sanity of the audience
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m Ais any PID in which 271 exists and is in A.

m Q(D) is the set of all primitive forms of discriminant D.

m Q(D)/ « is the set of such primitive forms modulo some
strange equivalence defined by properly representing the same
things.

m Q(D)/ « is a group with some strange operation only defined
on very special pairs of representatives from each operand.

m ...and it actually works!

m ...well, up to the fact that my proof only works if A is a
blasted PID...



Specializing further to F[T]

m F=F, =Fyn T an indeterminant.



Specializing further to F[T]

m F=F, =Fyn T an indeterminant.

m F[T] = {30 ,aiT'|n € Zso,a; € F} is the polynomial ring in
one variable (T) with coefficients coming from F.



Specializing further to F[T]

m F=F, =Fyn T an indeterminant.

m F[T] = {30 ,aiT'|n € Zso,a; € F} is the polynomial ring in
one variable (T) with coefficients coming from F.

m F[T] is a PID, and much more.



Specializing further to F[T]

m F=F, =Fyn T an indeterminant.

m F[T] = {30 ,aiT'|n € Zso,a; € F} is the polynomial ring in
one variable (T) with coefficients coming from F.

m F[T] is a PID, and much more.

m ...In particular, we have a discrete valuation on F[T],
degr (D7 oaiT') = n (degr(0) = —oc0)



Specializing further to F[T]

F=1F, =Fpn, T an indeterminant.

F[T]={>"aiT'|n € Z>o, a; € F} is the polynomial ring in
one variable (T) with coefficients coming from F.

F[T] is a PID, and much more.

...In particular, we have a discrete valuation on F[T],

degr (X7 gaiT') = n (degr(0) = —o0)

...Actually the negative of the degree, but same idea.
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More on F[T]

m Using the degree, we are able to get

Lemma

Denote f = [a, b, c] € Q(x). Then f —~ f' =[a', b/, c'] where
deg(b') < deg(a’) < deg(c’).

m Which gives

Q(D)/ « is finite.
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On F[T][]

m Let D € F[T] be an irreducible polynomial.

0= \/5

m Ok =F[T][p], K =F(T)[0]

m ...there's more behind where this comes from that you saw
last week.
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m A subring {1} C O CF(T)[9] is said to be an order in

F(T)[o] when O is a finitely generated [ T]-submodule of
F(T)[0], and contains a basis of F(T)[d] as a F( T )-vector
space.

m ...For a subring, {1} C O C F(T)[0], this is equivalent to
saying that O is a free F[T]-submodule of rank 2

m ...So for instance, every order looks like (1, f0>]F[T] for some
f € F[T].
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m /(O) is the group of all proper fractional ideals of O.

m ...What's a fractional ideal?

m ...What's it mean to be proper?
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More on /(O)

m A fractional ideal a of O is a nonzero O-submodule of
F(T)[0] such that there is an a € O such that aa C O.

m ...all nonzero finitely generated O submodules of F(T)[0] are
fractional ideals.

m Note that if a C O, then a is a typical ideal.
m Also note that O C Ok.
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More on /(O)

m Let a be a fractional ideal of O

m a is said to be a proper ideal if O = {b € F(T)[0]|ba C a}

m ..." C" is always true because a is an O module.

m Now the good news: proper fractional ideals are precisely
those that are invertible.

a
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More on /(O)

1(O) is then easily seen to be a group.

The operation is the standard multiplication of fractional
ideals.

LA = {ZT:O ikjk|ik eljred, me ZZl}-

...And the identity is O.
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m P(O) is the subgroup of all principal proper fractional ideals.
m ...Now isn’t that a mouthful?

m ...But this is all just like algebraic number theory, except O is
typically not a Dedekind Domain.

o (A Dedekind Domain’s is an integral domain in which all
the fractional ideals are invertible).
[ Hence why we introduced the notion of proper fractional

ideals.
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m We have a group, and a normal subgroup, would anyone not
take a gander at their quotient?

m /(O)/P(0O) is called the ideal class group of O.
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Q(D) 1(0)

[l [l
Q(D)/ 1(0)/P(0)

m On the left we have quadratic forms over F[T]

m On the right we have proper fractional ideals of an order
O = <1, fD>F[T]

m Q(D)/ « is still a an abelian group.

m /(O)/P(0O) is also an abelian group.

m ...And | drew them next to each other.



m Define ¢’ : Q(D) — 1(O) by [a, b, c] — <377>F[T

]



m Define ¢’ : Q(D) — 1(O) by [a, b, c] — <3»T>F[T]
—b+vD
2a

m ..where 7 =



m Define ¢’ : Q(D) — 1(O) by [a, b, c] — <3»T>F[T]
—b+vD
2a

m ..where 7 =

m ...doesn't 7 look familiar?



m But we don't really care about Q(D) and /(O), so ¢ is not
our concern.



m But we don't really care about Q(D) and /(O), so ¢ is not
our concern.

m Instead consider Q(D)/ « and /(O)/P(O) and the induced
map:

#: Q(D)/ ~= I(0)/P(O)
lla, b cl) = [(a, )y
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m Is ¢ well defined?

m If [[a, b, c]] = [[d, P, ¢']], does [(a,ﬂF[TJ = [(a’,T’)F[T]}?
m If [[a,b,c]] =[[4, b, c']], does

[a<1,—b~|—\/5> ] - [a'<1,—b+\@>

m Well, yes.

2

Fm F[TJ



More on ¢

Is ¢ well defined?
If [[a, b, c]] = [, V', ], does [<a,T>F[TJ - {@/,ﬂ)mﬂ}?

m If [[a,b,c]] =[[4, b, c']], does
1,— D =14 (1,—b D ?
[a< ’ b+\/>>]F[T]] [a < ’ +\/>>F[T]:|
m Well, yes.
m ...But again, I'm not going to torture the audience with the

details.
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More on ¢

In fact, ¢ has some other* nice properties. (*other than existing as
a mapping)

®  is injective.

B ( is surjective.

E ¢ is a group homomorphism.

m Together these give

Theorem
Q(D)/ ~= 1(0)/P(0O) as groups via .



m The form class group, Q(D)/ « is a finite group.



Summary
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m The form class group, Q(D)/ « is a finite group.
m The ideal class group of an order, I(O)/P(O) is a group.
m Q(D)/ ~=1(0)/P(O) as groups.
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