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What is a Quadratic Form?

A function

f =
∑

i1+i2+···+in=2

r(i1,i2,...,in)x
i1
1 x i2

2 · · · · · x
in
n ∈ R[x1, x2, ..., xn].

R is a ring

R[x1, x2, ..., xn] is the polynomial ring over R.



What is a Binary Quadratic Form?

A function
f = ax2 + bxy + cy2 ∈ R[x , y ].

Alternate Notation 2: f = [a, b, c]

Alternate Notation 3: f = [a, b, ∗]D
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f = [a, b, ∗]D , what is D???

D = Disc(f ) is the discriminant of f

D = Disc(f ) := b2 − 4ac

f is uniquely defined by a, b and either c or D.

...At least if R is an integral domain, char(R) 6= 2.
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Some Algebra Review

A ring is an additive group and multiplicative semigroup such
that the operations are distributive.

An integral domain is commutative ring with no zero divisors.

The characteristic of a ring with [multiplicative] identity is the
smallest positive n such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0

A semigroup is a set of elements with an operation which is
associative (e.g. (a · b) · c = a · (b · c))

A group is a semigroup with an identity (e.g. a + 0 = 0) and
inverses (e.g. a + (−a) = 0).
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An ideal of a commutative ring is a subring which is closed
under multiplication of ring elements.

A principal ideal of a ring is an ideal which is generated by a
single element: I = 〈a〉R for some a ∈ R.

A Principal Ideal Domain is an integral domain in which every
ideal is principal.

...They’re really nice

...Unfortunately
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Some Algebra Review

GL2(R) is the group of 2× 2 with entries in R which are
invertible in R2×2.

SL2(R) is the group of 2× 2 with entries in R and
determinant 1 (and thus is invertible in R2×2).

〈a1, a2, ..., al〉R = {a1r1 + a2r2 + · · ·+ al rl |ri ∈ R} is the ideal
generated by {a1, a2, ..., al}.
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Methodology

Choose R.

Do stuff.

Fail to do stuff.

Add properties to R.

Go to step 2.
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The [primary] sources of insight

My Advisers

Primes of The Form x + ny2, by David Cox.

...an overpriced Wiley book with a 6 page eratta

...that’s actually quite good.
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Overview of my work

Q(D) I (O)

Q(D)/ v I (O)/P(O)

ϕ′

[·] [·]

ϕ

Q(D) is the set of all primitive forms with discriminant D.

Q(D)/ v is Q(D) modulo v, where v denotes proper
equivalence.

I (O) is the group of all proper fractional ideals of a quadratic
extension of F[T ]

I (O)/P(O) is the ideal class group of the same quadratic
extension of F[T ]



Setup (for now)

A is a principle ideal domain

2−1 exists and is in A.

D will be reserved for the discriminant of our forms.



Setup (for now)

A is a principle ideal domain

2−1 exists and is in A.

D will be reserved for the discriminant of our forms.



Setup (for now)

A is a principle ideal domain

2−1 exists and is in A.

D will be reserved for the discriminant of our forms.



More on Q(D)

Q(D) is the set of all primitive forms with discriminant D.

...So if [a, b, c] ∈ Q(D), then b2 − 4ac = D.

If 〈a, b, c〉A = 〈1〉A, then f is said to be primitive.
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More on Q(D)/ v

Q(D)/ v= Q(D) modulo v, where f v g is an equivalence
relation called proper equivalence.

If f = [a, b, c], g = [a′, b′, c ′] ∈ Q(D), then f is said to be
properly equivalent to g if there is a γ ∈ SL2(A) so that
γf = g

...where γf =

[
p q
r s

]
f := f (px + qy , rx + sy) =

[f (p, r), 2apq + bqr + bps + 2crs, f (q, s)].

Proper equivalence is equivalent to saying that f and g
properly represent the same things

...If f (α, β) = m and 〈α, β〉A = 〈1〉A, then m is said to be
properly represented by f .
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More on Q(D)/ v

Theorem

Q(D)/ v is an abelian group.



Comments on the proof that Q(D)/ v is a group

Given our operation, associative, identity, and inverses are all
mostly easy.

Showing that the operation is well defined is not quite so easy.

...What is this operation?
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An operation on Q(D)/ v

To define an operation, we will use the following proposition:

Proposition

Let D ∈ A, M ∈ A r {0}, C1, C2 ∈ Q(D)/ v. Then there are
f1 ∈ C1 and f2 ∈ C2 such that

f1 = [a1,B, a2C ], f2 = [a2,B, a1C ]

where ai ,B,C ∈ A, a1a2 6= 0, 〈a1, a2〉A = 〈1〉A, and
〈a1a2,M〉A = 〈1〉A. (Forms that look like this are called
concordant)



An operation on Q(D)/ v

Let [[a, b, a′c]], [[a′, b, ac]] ∈ Q(D)/ v

Define [[a, b, a′c]][[a′, b, ac]] := [[aa′, b, c]].

...which gives us a nice little operation to prove
well-definedness of.

...which of course I’m not going to do here

...for the health and sanity of the audience
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Recap

Q(D)

Q(D)/ v

[·]

A is any PID in which 2−1 exists and is in A.

Q(D) is the set of all primitive forms of discriminant D.
Q(D)/ v is the set of such primitive forms modulo some
strange equivalence defined by properly representing the same
things.
Q(D)/ v is a group with some strange operation only defined
on very special pairs of representatives from each operand.
...and it actually works!
...well, up to the fact that my proof only works if A is a
blasted PID...
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Specializing further to F[T ]

F = Fr = Fpm , T an indeterminant.

F[T ] = {
∑n

i=0 aiT
i |n ∈ Z≥0, ai ∈ F} is the polynomial ring in

one variable (T ) with coefficients coming from F.

F[T ] is a PID, and much more.

...In particular, we have a discrete valuation on F[T ],
degT

(∑n
i=0 aiT

i
)

= n (degT (0) = −∞)

...Actually the negative of the degree, but same idea.
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More on F[T ]

Using the degree, we are able to get

Lemma

Denote f = [a, b, c] ∈ Q(∗). Then f v f ′ = [a′, b′, c ′] where
deg(b′) < deg(a′) ≤ deg(c ′).

Which gives

Theorem

Q(D)/ v is finite.
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On F[T ][d]

Let D ∈ F[T ] be an irreducible polynomial.

d :=
√

D

OK = F[T ][d], K = F(T )[d]

...there’s more behind where this comes from that you saw
last week.
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On O

A subring {1} ⊆ O ⊆ F(T )[d] is said to be an order in
F(T )[d] when O is a finitely generated F[T ]-submodule of
F(T )[d], and contains a basis of F(T )[d] as a F(T )-vector
space.

...For a subring, {1} ⊆ O ⊆ F(T )[d], this is equivalent to
saying that O is a free F[T ]-submodule of rank 2

...So for instance, every order looks like 〈1, f d〉F[T ] for some

f ∈ F[T ].
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More on I (O)

A fractional ideal a of O is a nonzero O-submodule of
F(T )[d] such that there is an a ∈ O such that aa ⊆ O.

...all nonzero finitely generated O submodules of F(T )[d] are
fractional ideals.

Note that if a ⊆ O, then a is a typical ideal.

Also note that O ⊆ OK .
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ϕ is injective.

ϕ is surjective.

ϕ is a group homomorphism.

Together these give

Theorem

Q(D)/ v∼= I (O)/P(O) as groups via ϕ.



Summary

Q(D) I (O)

Q(D)/ v I (O)/P(O)

ϕ′

[·] [·]

ϕ

The form class group, Q(D)/ v is a finite group.

The ideal class group of an order, I (O)/P(O) is a group.

Q(D)/ v∼= I (O)/P(O) as groups.



Summary

Q(D) I (O)

Q(D)/ v I (O)/P(O)

ϕ′

[·] [·]

ϕ

The form class group, Q(D)/ v is a finite group.

The ideal class group of an order, I (O)/P(O) is a group.

Q(D)/ v∼= I (O)/P(O) as groups.



Summary

Q(D) I (O)

Q(D)/ v I (O)/P(O)

ϕ′

[·] [·]

ϕ

The form class group, Q(D)/ v is a finite group.

The ideal class group of an order, I (O)/P(O) is a group.

Q(D)/ v∼= I (O)/P(O) as groups.



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study...

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study...

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study...

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study...

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study...

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%),

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%),

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%),

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%),

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%), Ring Theory (62%),

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%), Ring Theory (62%), Field
Theory (60%)

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%), Ring Theory (62%), Field
Theory (60%)

Lots of areas that look as if they would be interesting but I
know almost nothing about:



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%), Ring Theory (62%), Field
Theory (60%)

Lots of areas that look as if they would be interesting but I
know almost nothing about: Representation Theory (28%),



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%), Ring Theory (62%), Field
Theory (60%)

Lots of areas that look as if they would be interesting but I
know almost nothing about: Representation Theory (28%),
cohomology (40%),



Future Ambitions

Continue deeper this stuff. (60%)

Try to generalize this to more general settings (65%)

Continue with Drinfeld Modules (75%)

Find interesting questions in function fields (70%)

Lots of other interesting areas to study... Commutative
Algebra (65%), Algebraic Geometry (70%), Elliptic Curves
(68%), Group Theory (25%), Ring Theory (62%), Field
Theory (60%)

Lots of areas that look as if they would be interesting but I
know almost nothing about: Representation Theory (28%),
cohomology (40%), Category Theory (70%)



The End

Thanks for coming!

...For references, see my paper.



The End

Thanks for coming!

...For references, see my paper.






