Counting Latin Squares

Jeffrey Beyerl

August 24, 2009

Jeffrey Beyerl Counting Latin Squares

On the Summer 2009 computational prelim there were the following questions:

On the Summer 2009 computational prelim there were the following questions:

• Write a program, which given *n* will enumerate all Latin Squares of order *n*.

On the Summer 2009 computational prelim there were the following questions:

- Write a program, which given *n* will enumerate all Latin Squares of order *n*.
- Does the structure of your program suggest a formula for the number of Latin Squares of size n? If it does, use the formula to calculate the number of Latin Squares for n = 6, 7, 8, and 9.

Definition

A Latin Square is an $n \times n$ table with entries from the set $\{1, 2, 3, ..., n\}$ such that no column nor row has a repeated value.

• Sudoku Puzzles are 9×9 Latin Squares with some additional constraints.

- Sudoku Puzzles are 9 \times 9 Latin Squares with some additional constraints.
- The multiplication table for a finite group is a Latin Square.

- $\bullet\,$ Sudoku Puzzles are 9 \times 9 Latin Squares with some additional constraints.
- The multiplication table for a finite group is a Latin Square.
- The multiplication table for a quasigroup is a Latin Square.

Example: Sudoku

9	4	6	8	3	2	7	1	5
1	5	2	6	9	7	8	3	4
7	3	8	4	5	1	2	9	6
8	1	9	7	2	6	5	4	3
4	7	5	3	1	9	6	8	2
2	6	3	5	4	8	1	7	9
3	2	7	9	8	5	4	6	1
5	8	4	1	6	3	9	2	7
6	9	1	2	7	4	3	5	8

æ

⊡ ► < ≣

•	e	а	b	С
e	e	а	b	с
а	а	е	с	b
b	b	с	е	а
С	с	b	а	е

@▶ < ≣

Example: A Quasigroup

•	e	а	b	с
е	e	а	b	С
а	а	е	с	b
b	b	с	а	е
С	с	b	е	а

æ

⊡ ► < ≣

```
function enumerate(int xPosition, int yPosition)

if row at xPosition is not valid: reset and return

if column at yPosition is not valid: reset and return

if last position: record Latin Square, reset and return.

for i = 1 to n

set next position to i.

enumerate(next position).

reset and return.
```

Enumerating Latin Squares

```
public void Enumerate(Coordinate coord) throws IOException
    if(!isValidRow(coord.x)){
         entries[coord.x][coord.y] = 0;
         return;
    if(!isValidCol(coord.y)){
         entries[coord.x][coord.y] = 0;
         return:
    if(coord.y == n-1 \&\& coord.x == n-1)
         AddValidSquare();
         entries[coord.x][coord.y] = 0;
         return:
    for(int i=1; i <= n; i++){
         Coordinate nextPlace = next(coord);
         entries[nextPlace.x][nextPlace.y] = i;
         Enumerate(nextPlace);
         entries[nextPlace.x][nextPlace.y] = 0;
    return;
```

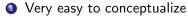
What insight does this program give to counting Latin Squares?

- What insight does this program give to counting Latin Squares?
- Backtracking algorithms are very difficult to analyze

- What insight does this program give to counting Latin Squares?
- Backtracking algorithms are very difficult to analyze
- Image: ...at least for me

- What insight does this program give to counting Latin Squares?
- Backtracking algorithms are very difficult to analyze
- ...at least for me
- The order to look at the tiles has an impact on the runtime.

- What insight does this program give to counting Latin Squares?
- Backtracking algorithms are very difficult to analyze
- ...at least for me
- Solution The order to look at the tiles has an impact on the runtime.
- **(**) Less than the n^{n^2} possibilities from brute force.



母▶ ∢ ≣▶

- Very easy to conceptualize
- Pairly easy to code

₽ > < €

- Very easy to conceptualize
- Pairly easy to code
- In the second second

- Very easy to conceptualize
- Pairly easy to code
- ...If you don't try to make it too complicated at first and have to rewrite the entire thing
- ……Like I did

- Very easy to conceptualize
- Pairly easy to code
- ...If you don't try to make it too complicated at first and have to rewrite the entire thing
- ……Like I did
- Image: Image: Image: Image: Only Image:

- Very easy to conceptualize
- Pairly easy to code
- ...If you don't try to make it too complicated at first and have to rewrite the entire thing
-Like I did
- Image: Image: Image: Image: Only Image:
- Generalizes to other types of puzzles (In particular <u>KenKen</u> easily.

• So how many Latin Squares are there?

Enumerating Latin Squares

• So how many Latin Squares are there?

- So how many Latin Squares are there?
- 1 | 1
- 2 2
- 3 | 12
- 4 576
- 5 161280
- 6 812851200
- 7 61479419904000
- 8 108776032459082956800
- 9 5524751496156892842531225600
- 10 9982437658213039871725064756920320000
- 11 776966836171770144107444346734230682311065600000

- ▲ - □

• *n*! - reordering columns.

æ

- *n*! reordering columns.
- n!(n-1)! reordering columns and rows.

⊡ ► < ≣ ►

- *n*! reordering columns.
- n!(n-1)! reordering columns and rows.
- $n!(n-2)! \left\lfloor \frac{(n-1)!}{e} + \frac{1}{2} \right\rfloor$ reordering the columns, considering derangements for the second row, then reordering the other rows.

- *n*! reordering columns.
- n!(n-1)! reordering columns and rows.
- $n!(n-2)! \left\lfloor \frac{(n-1)!}{e} + \frac{1}{2} \right\rfloor$ reordering the columns, considering derangements for the second row, then reordering the other rows.
- $\frac{(n!)^{2n}}{n^{n^2}}$ A a combinatorics textbook. (found on Wikipedia) (Better than the above for $n \ge 6$).

Why Lower Bounds?

æ

Im ▶ < 10</p>

• No exact formula is known.

- ● ● ●

- No exact formula is known.
- Sloane's On-Line Encyclopedia of Integer Sequences lists the problem as "hard"

- No exact formula is known.
- Sloane's On-Line Encyclopedia of Integer Sequences lists the problem as "hard"
- Exact values are only known through n = 11 (possibly n = 12).

• There are two equivalence relations that can be put on Latin Squares

- There are two equivalence relations that can be put on Latin Squares
- ...This is useful so that one need only count the number of equivalence classes

• If two Latin Squares are the same up to row/column permutations, they are equivalent (in this relation)

- If two Latin Squares are the same up to row/column permutations, they are equivalent (in this relation)
- ...A canonical representative is a reduced Latin Square.

- If two Latin Squares are the same up to row/column permutations, they are equivalent (in this relation)
- ...A canonical representative is a reduced Latin Square.
-which has the permutation (1, 2, 3, 4, ..., n) across the first row and down the first column.

• If two Latin Squares are the same up to row/column permutations and renaming the elements, they are equivalent (in this relation - called isotopy)

n	Latin Squares	Equivalence classes	isotrophy classes	paratopy classes
1	1	1	1	1
2	2	1	1	1
3	12	1	1	1
4	576	4	2	2
5	161280	56	2	2
6	$pprox$ 8 $ imes$ 10 8	9408	22	12
7	$pprox$ 6 $ imes$ 10 13	$pprox 1 imes 10^7$	564	147
8	$pprox 1 imes 10^{20}$	$pprox$ 5 $ imes$ 10 11	1676267	283657
9	$pprox$ 5 $ imes$ 10 27	$pprox$ 3 $ imes$ 10 17	115618721533	19270853541
10	$pprox$ 9 $ imes$ 10 36	$pprox 7 imes 10^{24}$	$pprox 2 imes 10^{17}$	$pprox$ 3 $ imes$ 10 16
11	$pprox 7 imes 10^{47}$	pprox 5 $ imes$ 10 ³³	?	Unknown

• Orthogonal Arrays (They are one)

⊡ ► < ≣ ►

- Orthogonal Arrays (They are one)
- Error Correcting Codes

- Orthogonal Arrays (They are one)
- Error Correcting Codes
- P=NP?

- ● ● ●

None

・ロット (日) ・ (日) ・

문 🛌 문

- None
- (...On this problem)

æ

Im ▶ < 10</p>