The product of nearly holomorphic eigenforms is rarely an eigenform

Jeffrey Beyerl

December $\int_0^2 x^3 dx$, 2010

Modular forms for level $\Gamma = SL_2(\mathbb{Z})$

Definition

A modular form of weight k is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ satisfying

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

Modular Forms

Example

The weight k Eisenstein series is a modular form, given by

$$E_k(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

Example

The weight 12 cusp form is $\Delta(z)$ given by

$$\Delta(z) = \left(rac{1}{2\pi}
ight)^{12} q \prod_{n=1}^{\infty} (1-q^n)^{24}$$

Modular Forms

Fact

Let \mathcal{E}_k be the space of weight k Eisenstein series, and S_k the space of weight k cusp forms. Let M_k be the space of all weight k modular forms. Then

$$M_k = E_k \oplus S_k$$

Hecke Operators

Definition

The Hecke operator T_n is a linear operator $M_k \rightarrow M_k$ given by

$$(T_n(f))(z) = n^{k-1} \sum_{d|n} d^{-k} \sum_{b=0}^{d-1} f\left(\frac{nz+bd}{d^2}\right)$$

Definition

A modular form $f \in M_k$ is said to be an eigenform if it is an eigenvector for all the Hecke operators $\{T_n\}_{n \in \mathbb{N}}$.

More on Modular Forms

Fact

 M_k has a basis of eigenforms.

Example

 M_{12} is generated by E_{12} and $\Delta(z)$.

Example

 S_k has dimension 1 for $k \in \{12, 16, 18, 20, 22, 26\}$. In this case let $\Delta_k(z)$ be the unique normalized cusp form in S_k . In particular $\Delta_{12}(z) = \Delta(z)$.

More on Modular Forms

Fact

Hecke operators preserve Eisenstein series (resp. Cusp forms)

Remark

In particular, because dim $(\mathcal{E}_k) = 1$, every $f \in \mathcal{E}_k$ is an eigenform. (resp. if dim $(S_k) = 1$ then every $f \in S_k$ is an eigenform)

Review of Ghate and Duke's work Review of Lanphier's work

Products of eigenforms

Example

 E_4 and E_6 are eigenforms. What about $E_4 \cdot E_6$? $E_4 \cdot E_6 \in M_{10}(\Gamma)$, and so is an eigenform (E_{10}) because dim $(M_{10}) = 1$.

Review of Ghate and Duke's work Review of Lanphier's work

Results of Ghate and Duke

Theorem

The product of two eigenforms is an eigenform only in the following cases:

- $E_4^2 = E_8$
- $E_4 E_6 = E_{10}$
- $E_4\Delta_{12} = \Delta_{16}$
- $E_4\Delta_{16}=E_8\Delta_{12}=\Delta_{20}$
- $E_4 \Delta_{18} = E_6 \Delta_{16} = E_{10} \Delta_{12} = \Delta_{22},$
- $E_4 \Delta_{22} = E_6 \Delta_{20} = E_8 \Delta_{18} = E_{10} \Delta_{12} = E_{14} \Delta_{12} = \Delta_{26}$.
- $E_6E_8 = E_4E_{10} = E_{14}$
- $E_6\Delta_{12} = \Delta_{18}$

Review of Ghate and Duke's work Review of Lanphier's work

Rankin-Cohen bracket operator

Definition

The Rankin-Cohen bracket operator $[f,g]_j: M_k(\Gamma) \times M_l(\Gamma) \to M_{k+l+2j}(\Gamma)$ is given by

$$[f,g]_j := \frac{1}{(2\pi i)^j} \sum_{a+b=j} (-1)^a \binom{j+k-1}{b} \binom{j+l-1}{a} f^{(a)}(z) g^{(b)}(z).$$

Remark

 $[f,g]_0=\mathit{fg}$

Remark

 $[\cdot, \cdot]_j$ is the unique (up to a constant) bilinear operator that maps $M_k \times M_l$ to M_{k+l+2n} .

Review of Ghate and Duke's work Review of Lanphier's work

Rankin-Cohen brackets of eigenforms

Example

 E_4 and Δ_{12} are eigenforms. What about $[E_4, \Delta_{12}]_2$? $[E_4, \Delta_{12}]_2$ is a weight 20 cusp form, and so because dim $(S_{20}) = 1$ is an eigenform $(78\Delta_{20})$.

Review of Ghate and Duke's work Review of Lanphier's work

Result of Lanphier

Theorem

The Rankin-Cohen bracket operator of eigenforms is an eigenform only in the following cases:

• $E_4^2 = E_8$, $E_4 E_6 = E_{10}$, $E_6 E_8 = E_4 E_{10} = E_{14}$

•
$$[E_k, E_l]_n$$
 where $n \ge 1$,
 $k, l \in \{4, 6, 8, 10, 14\}, k + l + 2n \in \{12, 16, 18, 20, 22, 26\}$

• $[E_k, \Delta_l]_n$ where $n \ge 0$, $k, l \in \{4, 6, 8, 10, 14\}, k + l + 2n \in \{12, 16, 18, 20, 22, 26\}$

The Maass-Shimura operator

Definition

We define the Maass-Shimura operator δ_k on $f \in M_k(\Gamma)$ by

$$\delta_k(f) = \left(\frac{1}{2\pi i}\left(\frac{k}{2i\mathrm{Im}(z)} + \frac{\partial}{\partial z}\right)f\right)(z).$$

Write $\delta_k^{(r)} := \delta_k \circ \cdots \circ \delta_k$, with $\delta_k^{(0)} = id$. A function of the form $\delta_k^{(r)}(f)$ is called a nearly holomorphic modular form of weight k + 2r. The space of these forms is denoted \widetilde{M}_k .

Hecke Operators applied to M_k

Definition

Let $\delta_k^{(r)} f$ be a nearly holomorphic modular form. The Hecke operator T_n is defined with the same formula:

$$\left(T_n\left(\delta_k^{(r)}f\right)\right)(z) = n^{k-1}\sum_{d|n} d^{-k}\sum_{b=0}^{d-1} \delta_k^{(r)}f\left(\frac{nz+bd}{d^2}\right).$$

Definition

A modular form $f \in \widetilde{M}_k$ is said to be an eigenform if it is an eigenvector for all the Hecke operators $\{T_n\}_{n \in \mathbb{N}}$.

Statement of result Sketch of proof

Theorem

The product of two nearly holomorphic eigenforms is an eigenform only in the following cases:

- $E_4^2 = E_8$
- $E_4 E_6 = E_{10}$
- $E_4\Delta_{12} = \Delta_{16}$
- $E_4\Delta_{16}=E_8\Delta_{12}=\Delta_{20}$
- $E_4 \Delta_{18} = E_6 \Delta_{16} = E_{10} \Delta_{12} = \Delta_{22},$
- $E_4 \Delta_{22} = E_6 \Delta_{20} = E_8 \Delta_{18} = E_{10} \Delta_{12} = E_{14} \Delta_{12} = \Delta_{26}$.
- $E_6E_8 = E_4E_{10} = E_{14}$
- $E_6\Delta_{12} = \Delta_{18}$
- $\delta_4 E_4 \cdot E_4 = \frac{1}{2} \delta_8 E_8$

Statement of result Sketch of proof

Theorem

The product of two nearly holomorphic eigenforms is an eigenform only in the following cases:

- $E_4^2 = E_8$
- $E_4 E_6 = E_{10}$
- $E_4\Delta_{12} = \Delta_{16}$
- $E_4\Delta_{16}=E_8\Delta_{12}=\Delta_{20}$
- $E_4 \Delta_{18} = E_6 \Delta_{16} = E_{10} \Delta_{12} = \Delta_{22},$
- $E_4 \Delta_{22} = E_6 \Delta_{20} = E_8 \Delta_{18} = E_{10} \Delta_{12} = E_{14} \Delta_{12} = \Delta_{26}$.
- $E_6E_8 = E_4E_{10} = E_{14}$
- $E_6\Delta_{12} = \Delta_{18}$
- $\delta_4 E_4 \cdot E_4 = \frac{1}{2} \delta_8 E_8$

Statement of result Sketch of proof

The Rankin-Cohen bracket operator meets the Maass-Shimura operator

Fact (Lanphier)

$$[f,g]_n(z) = \sum_{r+s=n} (-1)^r \binom{n+k-1}{s} \binom{n+l-1}{r} \delta_k^{(r)} f(z) \times \delta_l^{(s)} g(z)$$

Fact

$$\delta_{k}^{(r)}(f)\delta_{l}^{(s)}(g) = \sum_{j=0}^{r+s} \frac{\delta_{k+l+2j}^{(r+s-j)}[f,g]_{j}(z)}{\binom{k+l+2j-2}{j}} \left(\sum_{m=\max(j-r,0)}^{s} (-1)^{j+m} \frac{\binom{s}{m}\binom{r+m}{j}\binom{k+r+m-1}{r+m-j}}{\binom{k+l+r+m+j-1}{r+m-j}}\right)$$

Lemma

Suppose that $\{f_i\}_i$ is a collection of modular forms with distinct weights k_i . Then $\sum_{i=1}^t a_i \delta_{k_i}^{\left(n-\frac{k_i}{2}\right)}(f_i)$ $(a_i \in \mathbb{C}^*)$ is an eigenform if and only if every $\delta_{k_i}^{\left(n-\frac{k_i}{2}\right)}f_i$ is an eigenform and they have the same eigenvalue.

Lemma

Let l < k and $f \in M_k(\Gamma)$, $g \in M_l(\Gamma)$ both be eigenforms. Then $\delta_l^{\left(\frac{k-l}{2}\right)}g$ and f do not have the same eigenvalues.

Statement of result Sketch of proof

1: Write the product as a sum of Rankin-Cohen brackets

Fact

$$\delta_{k}^{(r)}(f)\delta_{l}^{(s)}(g) = \sum_{j=0}^{r+s} \frac{\delta_{k+l+2j}^{(r+s-j)}[f,g]_{j}(z)}{\binom{k+l+2j-2}{j}} \left(\sum_{m=\max(j-r,0)}^{s} (-1)^{j+m} \frac{\binom{s}{m}\binom{r+m}{j}\binom{k+r+m-1}{r+m-j}}{\binom{k+l+r+m+j-1}{r+m-j}}\right)$$

Statement of result Sketch of proof

2: One of the first two terms is nonzero

Fact

For eigenforms f, g, the top term, $(-1)^r \frac{[f,g]_{r+s}}{\binom{k+l+2r+2s-2}{r+s}}$, is nonzero unless if $f = g = E_k$, in which case the second term is nonzero.

Fact

 $[f,g]_{r+s}$ (resp. $[f,g]_{r+s-1}$) is an eigenform finitely many times.

Statement of result Sketch of proof

3: If the summation has more than one term, it is not an eigenform

Example

$$\delta_{6}E_{6} \cdot E_{8} = \frac{-1}{14}[E_{6}, E_{8}]_{1} + \frac{3}{7}\delta_{14}[E_{6}, E_{8}]_{0}$$

Statement of result Sketch of proof

3: If the summation has more than one term, it is not an eigenform

Example

$$\delta_{6}E_{6} \cdot E_{8} = \underbrace{\frac{-1}{14}[E_{6}, E_{8}]_{1} + \frac{3}{7}\delta_{14}[E_{6}, E_{8}]_{0}}_{\text{Bad!}}$$

Statement of result Sketch of proof

4: Compute the last finitely many (110) cases and check for eigenforms.

Fact

- 16 cases are the holomorphic cases
- 1 case is $\delta_4 E_4 \cdot E_4 = \frac{1}{2} \delta_8 E_8$
- The 93 other cases have multiple terms and so are not eigenforms.

Statement of result Sketch of proof

Summary of proof

- Write the product as a sum of Rankin-Cohen brackets
- One of the first two terms is nonzero
- If the summation has more than one term, it is not an eigenform
- Sompute the last finitely (110) many and check for eigenforms