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Introduction

Modular forms for level ' = SL,(7Z)

A modular form of weight k is a holomorhpic function f : HH — C satisfying

f (a” b) = (cz + d)f(2)

cz+d
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Introduction

Modular Forms

The weight k Eisenstein series is a modular form, given by

Ex( _1——Zak 0

Example

The weight 12 cusp form is A(z) given by
1\12
A — (- 1—g" 24
@=(5) ola-)
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Introduction

Modular Forms

Let £ be the space of weight k Eisenstein series, and Sy the space of
weight k cusp forms. Let My be the space of all weight k modular forms.
Then

M, = E, ® Sk
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Introduction

Hecke Operators

Definition
The Hecke operator T, is a linear operator My — M, given by

(T» (F)) (2) = < IZd "Zf<"2+bd>.

Definition

A modular form f € M, is said to be an eigenform if it is an eigenvector
for all the Hecke operators { Ty} -
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Introduction

More on Modular Forms

My has a basis of eigenforms.

My, is generated by Ejp and A(z).

Sk has dimension 1 for k € {12,16,18,20,22,26}. In this case let Ax(z)
be the unique normalized cusp form in Si. In particular A12(z) = A(z).
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Introduction

More on Modular Forms

Hecke operators preserve Eisenstein series (resp. Cusp forms)

Remark

In particular, because dim(Ey) =1, every f € £ is an eigenform.
(resp. if dim(Sk) =1 then every f € Sy is an eigenform)
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Previous Works Review of Ghate and Duke's work
Review of Lanphier’s work

Products of eigenforms

Example

E4 and Eg are eigenforms.
What about Ej4 - E?
E; - Es € Mip(T), and so is an eigenform (Ejp) because dim(Myo) = 1.
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Previous Works Review of Ghate and Duke's work
Review of Lanphier's work

Results of Ghate and Duke

The product of two eigenforms is an eigenform only in the following cases:

o EZ =Fg

o EFiEq = Eqp

L SVANPIEWANT

@ EqAq16 = EgA12 = Ao

o EqA1g8 = EgA16 = E1oQ12 = Ao,

@ Eqlpp = EgAng = EgA13 = E10A12 = E14Q12 = Aoe.
o EgEg = E4E10 = Ex4

o EgA1p = Agg
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Previous Works Review of Ghate and Duke's work
Review of Lanphier’s work

Rankin-Cohen bracket operator

Definition

The Rankin-Cohen bracket operator
[f,glj : Mi(T) x My(I') = Myy142j() is given by

[f.glj = 27”)J Z (J ke 1> <j * :_ 1) F3)(2)g")(2).

Remark
[f.glo=fg

Remark

[-,-]; is the unique (up to a constant) bilinear operator that maps My x M,
to My jy2n.
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Previous Works Re of Ghate and Duke
of Lanphier’s work

Rankin-Cohen brackets of eigenforms

Example

E4 and Ajs are eigenforms.

What about [E4, A12]2?

[Es, A12]> is a weight 20 cusp form, and so because dim(Szp) =1 is an
eigenform (78Ax0).
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Previous Works Review of Ghate and Duke's work
Review of Lanphier’s work

Result of Lanphier

Theorem

The Rankin-Cohen bracket operator of eigenforms is an eigenform only in
the following cases:

o Ef = Eg, E4Es = Eio, EoEs = EsE19 = Ens
o [Ex, Ej]n where n > 1,

k,l € {4,6,8,10,14}, k + | +2n € {12, 16,18, 20, 22, 26}
o [Ex,A(], where n >0,

k,l € {4,6,8,10,14}, k + | + 2n € {12, 16,18, 20,22, 26}

Jeffrey Beyerl Products of nearly holomorphic eigenforms



Nearly holomorhpic modular forms

The Maass-Shimura operator

We define the Maass-Shimura operator d, on f € My(I') by

ou(f) = <217n (2i|r:(z) + aaz) f) (2)-

Write 5,(:) := ) 0---00d, with 5( ) = id. A function of the form 5( )(f) is
called a nearly hoIomorp~h|c modular form of weight k 4+ 2r. The space of
these forms is denoted M,.
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Nearly holomorhpic modular forms

Hecke Operators applied to M,

Let 5,((r)f be a nearly holomorhpic modular form. The Hecke operator T,
is defined with the same formula:

(72 (56) ) (2) = - 1Zd kz(s <”Z+bd>.

A modular form f € I\~4k is said to be an eigenform if it is an eigenvector
for all the Hecke operators {T,} -
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Statement of result
Sketch of proof
New Result

The product of two nearly holomorphic eigenforms is an eigenform only in
the following cases:

o EZ2 =Fg

o EFiEq = Eqp

LI SVAND AT

@ E4A16 = EgA12 = Ao

@ EqAq1g = EgA16 = E1oD12 = Ao,

@ EqAn = EgAng = EgA13 = E10A12 = E14Q12 = Aoe.
o EgEg = E4E10 = Eq4

° EgA1p = Agg

o 64E4 By = 165Es
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Statement of result
Sketch of proof
New Result

The product of two nearly holomorphic eigenforms is an eigenform only in
the following cases:

o EZ2 =Fg

o EFiEq = Eqp

LI SVAND AT

@ E4A16 = EgA12 = Ao

@ EqAq1g = EgA16 = E1oD12 = Ao,

@ EqAn = EgAng = EgA13 = E10A12 = E14Q12 = Aoe.
o EgEg = E4E10 = Eq4

° EgA1p = Agg

® 04E4 - E4 = 165Es
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Statement of result
Sketch of proof
New Result

The Rankin-Cohen bracket operator meets the

Maass-Shimura operator

Fact (Lanphier)

@) = X o ("TETT) (7T < et

r
r+s=n S

2 60 IF gl(2) ( 5~ (2)(*m) (ktitn”"jl))

51(!) f 555) = k+1+2j—2 —1y k+I+r+m+j—1
(9 = 3 = A e

Jj=0 J r+m—j

m=max(j—r,0)
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Statement of result
Sketch of proof

New Result

Lemma

Suppose that {f;}; is a collection of modular forms with distinct

t k;
weights k;. Then Z aidlgn 2)(f,-) (ai € C*) is an eigenform if and only if

(),
2

every 0, f; is an eigenform and they have the same eigenvalue.

Lemma

k=l
Let | < k and f € M(T),g € M(T") both be eigenforms. Then 6,( )g
and f do not have the same eigenvalues.
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Statement of result
Sketch of proof

New Result

1: Write the product as a sum of Rankin-Cohen brackets

r+s (r+s —J) s r+m\ (k+r+m—1
r s k+1 [fg]() m( )( )(rm— )
6l(< )(f)éf )(g) = Z % Z (= )J+ (k+l+r+m+j 1)1
J r+m—j

Jj=0 m=max(j—r,0)
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Statement of result
Sketch of proof

New Result

2: One of the first two terms is nonzero

For eigenforms f, g, the top term, (—1)" %, is nonzero unless if

r+s
f = g = Ex, in which case the second term is nonzero.

[f,glr+s (resp. [f,glr+s—1) is an eigenform finitely many times.
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Statement of result
Sketch of proof

New Result

3: If the summation has more than one term,
it is not an eigenform

Example

|

-1
06Ee - Eg = ﬁ[Eﬁ’ Esl: + ?514[E6, Eglo
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Statement of result
Sketch of proof

New Result

3: If the summation has more than one term,
it is not an eigenform

Example

|

—1
06Ee - Eg = ﬁ[Em Esl: + ?514[E67 Eglo

. J/

Bad!
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Statement of result
Sketch of proof

New Result

4: Compute the last finitely many (110) cases and
check for eigenforms.

@ 16 cases are the holomorphic cases

@ I caseis 04E4 - E4 = %68E3

@ The 93 other cases have multiple terms and so are not eigenforms.
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Statement of result
Sketch of proof
New Result

Summary of proof

© Write the product as a sum of Rankin-Cohen brackets

@ One of the first two terms is nonzero

© If the summation has more than one term, it is not an eigenform
© Compute the last finitely (110) many and check for eigenforms
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