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Modular forms for level Γ = SL2(Z)

Definition

A modular form of weight k is a holomorhpic function f : H→ C satisfying

f

(
az + b

cz + d

)
= (cz + d)k f (z)
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Modular Forms

Example

The weight k Eisenstein series is a modular form, given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

Example

The weight 12 cusp form is ∆(z) given by

∆(z) =

(
1

2π

)12

q
∞∏
n=1

(1− qn)24
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Modular Forms

Fact

Let Ek be the space of weight k Eisenstein series, and Sk the space of
weight k cusp forms. Let Mk be the space of all weight k modular forms.
Then

Mk = Ek ⊕ Sk
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Hecke Operators

Definition

The Hecke operator Tn is a linear operator Mk → Mk given by

(Tn (f )) (z) = nk−1
∑
d |n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

Definition

A modular form f ∈ Mk is said to be an eigenform if it is an eigenvector
for all the Hecke operators {Tn}n∈N.
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More on Modular Forms

Fact

Mk has a basis of eigenforms.

Example

M12 is generated by E12 and ∆(z).

Example

Sk has dimension 1 for k ∈ {12, 16, 18, 20, 22, 26}. In this case let ∆k(z)
be the unique normalized cusp form in Sk . In particular ∆12(z) = ∆(z).
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More on Modular Forms

Fact

Hecke operators preserve Eisenstein series (resp. Cusp forms)

Remark

In particular, because dim(Ek) = 1, every f ∈ Ek is an eigenform.
(resp. if dim(Sk) = 1 then every f ∈ Sk is an eigenform)
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Review of Ghate and Duke’s work
Review of Lanphier’s work

Products of eigenforms

Example

E4 and E6 are eigenforms.
What about E4 · E6?
E4 · E6 ∈ M10(Γ), and so is an eigenform (E10) because dim(M10) = 1.
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Results of Ghate and Duke

Theorem

The product of two eigenforms is an eigenform only in the following cases:

E 2
4 = E8

E4E6 = E10

E4∆12 = ∆16

E4∆16 = E8∆12 = ∆20

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆12 = E14∆12 = ∆26.

E6E8 = E4E10 = E14

E6∆12 = ∆18
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Rankin-Cohen bracket operator

Definition

The Rankin-Cohen bracket operator
[f , g ]j : Mk(Γ)×Ml(Γ)→ Mk+l+2j(Γ) is given by

[f , g ]j :=
1

(2πi)j

∑
a+b=j

(−1)a
(

j + k − 1

b

)(
j + l − 1

a

)
f (a)(z)g (b)(z).

Remark

[f , g ]0 = fg

Remark

[·, ·]j is the unique (up to a constant) bilinear operator that maps Mk ×Ml

to Mk+l+2n.
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Rankin-Cohen brackets of eigenforms

Example

E4 and ∆12 are eigenforms.
What about [E4,∆12]2?
[E4,∆12]2 is a weight 20 cusp form, and so because dim(S20) = 1 is an
eigenform (78∆20).
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Result of Lanphier

Theorem

The Rankin-Cohen bracket operator of eigenforms is an eigenform only in
the following cases:

E 2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14

[Ek ,El ]n where n ≥ 1,
k, l ∈ {4, 6, 8, 10, 14}, k + l + 2n ∈ {12, 16, 18, 20, 22, 26}
[Ek ,∆l ]n where n ≥ 0,
k, l ∈ {4, 6, 8, 10, 14}, k + l + 2n ∈ {12, 16, 18, 20, 22, 26}
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The Maass-Shimura operator

Definition

We define the Maass-Shimura operator δk on f ∈ Mk(Γ) by

δk(f ) =

(
1

2πi

(
k

2i Im (z)
+

∂

∂z

)
f

)
(z).

Write δ
(r)
k := δk ◦ · · · ◦ δk , with δ

(0)
k = id . A function of the form δ

(r)
k (f ) is

called a nearly holomorphic modular form of weight k + 2r . The space of
these forms is denoted M̃k .
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Hecke Operators applied to M̃k

Definition

Let δ
(r)
k f be a nearly holomorhpic modular form. The Hecke operator Tn

is defined with the same formula:(
Tn

(
δ

(r)
k f
))

(z) = nk−1
∑
d |n

d−k
d−1∑
b=0

δ
(r)
k f

(
nz + bd

d2

)
.

Definition

A modular form f ∈ M̃k is said to be an eigenform if it is an eigenvector
for all the Hecke operators {Tn}n∈N.
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Statement of result
Sketch of proof

Theorem

The product of two nearly holomorphic eigenforms is an eigenform only in
the following cases:

E 2
4 = E8

E4E6 = E10

E4∆12 = ∆16

E4∆16 = E8∆12 = ∆20

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆12 = E14∆12 = ∆26.

E6E8 = E4E10 = E14

E6∆12 = ∆18

δ4E4 · E4 = 1
2δ8E8
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Theorem

The product of two nearly holomorphic eigenforms is an eigenform only in
the following cases:

E 2
4 = E8

E4E6 = E10

E4∆12 = ∆16

E4∆16 = E8∆12 = ∆20

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆12 = E14∆12 = ∆26.

E6E8 = E4E10 = E14

E6∆12 = ∆18

δ4E4 · E4 = 1
2δ8E8
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The Rankin-Cohen bracket operator meets the
Maass-Shimura operator

Fact (Lanphier)

[f , g ]n(z) =
∑

r+s=n

(−1)r
(

n + k − 1

s

)(
n + l − 1

r

)
δ

(r)
k f (z)× δ(s)

l g(z)

Fact

δ
(r)
k (f )δ

(s)
l (g) =

r+s∑
j=0

δ
(r+s−j)
k+l+2j [f , g ]j(z)(

k+l+2j−2
j

)
 s∑

m=max(j−r ,0)

(−1)j+m

(
s
m

)(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+r+m+j−1

r+m−j

)

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Lemma

Suppose that {fi}i is a collection of modular forms with distinct

weights ki . Then
t∑

i=1

aiδ

(
n− ki

2

)
ki

(fi ) (ai ∈ C∗) is an eigenform if and only if

every δ

(
n− ki

2

)
ki

fi is an eigenform and they have the same eigenvalue.

Lemma

Let l < k and f ∈ Mk(Γ), g ∈ Ml(Γ) both be eigenforms. Then δ
( k−l

2 )
l g

and f do not have the same eigenvalues.

Jeffrey Beyerl Products of nearly holomorphic eigenforms



Introduction
Previous Works

Nearly holomorhpic modular forms
New Result

Statement of result
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1: Write the product as a sum of Rankin-Cohen brackets

Fact

δ
(r)
k (f )δ

(s)
l (g) =

r+s∑
j=0

δ
(r+s−j)
k+l+2j [f , g ]j(z)(

k+l+2j−2
j

)
 s∑

m=max(j−r ,0)

(−1)j+m

(
s
m

)(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+r+m+j−1

r+m−j

)

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2: One of the first two terms is nonzero

Fact

For eigenforms f , g, the top term, (−1)r [f ,g ]r+s

(k+l+2r+2s−2
r+s )

, is nonzero unless if

f = g = Ek , in which case the second term is nonzero.

Fact

[f , g ]r+s (resp. [f , g ]r+s−1) is an eigenform finitely many times.
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3: If the summation has more than one term,
it is not an eigenform

Example

δ6E6 · E8 =
−1

14
[E6,E8]1 +

3

7
δ14[E6,E8]0
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Statement of result
Sketch of proof

3: If the summation has more than one term,
it is not an eigenform

Example

δ6E6 · E8 =
−1

14
[E6,E8]1 +

3

7
δ14[E6,E8]0︸ ︷︷ ︸

Bad!
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4: Compute the last finitely many (110) cases and
check for eigenforms.

Fact

16 cases are the holomorphic cases

1 case is δ4E4 · E4 = 1
2δ8E8

The 93 other cases have multiple terms and so are not eigenforms.
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Summary of proof

1 Write the product as a sum of Rankin-Cohen brackets

2 One of the first two terms is nonzero

3 If the summation has more than one term, it is not an eigenform

4 Compute the last finitely (110) many and check for eigenforms
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