
Achieving Balance in the ARPG Genre of

Video Games with Asymmetrical Choices

Jeffrey J. Beyerl ∗

Abstract

Video games are a large and still growing industry. Games are
becoming more complex and manufacturers are competing for play-
ers. An Action Adventure Roll Playing Game (ARPG) is one genre
of game in which a player develops a character with a primary em-
phasis on combat encounters. This paper will give basic theory for
describing and modeling balance in this type of game, with a par-
ticular look at the resource management scenario with asymmetrical
builds.

1 Introduction

In an ARPG a player develops a character with his or her emphasis on
efficiently winning player-versus-monster (PVM) combat encounters. In the
first ARPGs there were very few, if any, choices. As computing technology
and game design developed, players were given more choices. However,
many of these choices are ineffective at stimulating player interest because
there is one clearly “best” choice. The collection of all choices a player
makes regarding the development of his or her character is called a build.
Effective game balance will increase the longevity of the game by increasing
the replayability. However, it should be noted that serious analysis in this
field is still in its infancy [2].

One common method of giving players choices is through a resource
management scenario. Typically this resource is called “mana”, although
the specific terminology is irrelevant and changes from game to game. Sim-
ilarly a common term for a choice to be made is the selection of a character
“skill”. In this scenario the player has several choices for methods of cre-
ating a resource, and several choices for using this resource. This creates
desirable complexity for the player: with just a linear number of choices,
there are a quadratic number of builds. If there is one (or a few) builds that
are significantly better than the rest, we say that such a build is dominant.

∗Department of Mathematics, University of Central Arkansas, Conway, AR 7203
email: jbeyerl@uca.edu

We focus on combat encounters: both the player’s character and his or
her opponent(s) have a finite number of hit points. This a reasonable focus
because the vast majority of time spent will be in combat. In fact, even
in more social genres such as massively multiplayer online RPG’s, players
still spend over half their time in combat [3].

The ultimate goal in an encounter is to reduce the opponent(s) hit points
to zero. Hence we quantify the damage per second (dps) with each resource
generation skill and the dps with each skill requiring the expenditure of
resources. Depending on the nature of the skills, the ratio of how often each
can be used varies: we call the respective amounts uptime. The damage a
character deals must be at least the hit points of the opponent, so we have
the inequality

h ≤ t · (dg · ug + dc · uc)

where h is the opponents’ hit points, t is the time taken in the encounter,
d• is the dps of each skill, and u• is the uptime of the resource consumption
skill in the specified build. There are more factors to address, as given in the
next section, but this is a simple model of this scenario for one particular
build chosen.

2 Modeling balance among builds

One goal of a game designer is to maximize the longevity of the game,
which is ultimately achieved by depth and balance [1]. In an ARPG that
means replayability: players should be encouraged to play the game many
times, experimenting with each different build and not feel locked into just
one. That is to say that all the different builds should be balanced: the
time taken for a typical encounter should not be be significantly longer or
shorter for one build than another. We can characterize the balance among
builds by using statistical variance:

1

n

∑
b

(
t− tb

)2
(1)

where tb is the time taken in a typical encounter using build b, t is the
average of all tb, and n is the total number of builds. The goal, then,
is to determine exactly how powerful each individual skill should be to
nontrivially minimize the variance among builds.

In practice it can be desirable to specify how much time a typical en-
counter should take, so t will be treated as a constant. If the game involves
nothing but simple combat (such as standing still and repeatedly swinging
a sword until slaying the opponent), then the model in the previous section
is enough. There are two more aspects of PVM combat that we consider

here. Firstly a player will typically need to have his character do some-
thing other than attacking: blocking, dodging, kiting, feigning a retreat, or
healing himself for instance. How much time he can spend actually dealing
damage to the opponent will vary based on build, and we characterize that
with the factor K representing the percentage of time spent on the offense.
The letter K is chosen because players typically call this behavior “kiting”.
Secondly, most games will have some skills that deal damage to a single
target, and other skills that deal damage to multiple targets at once. We
characterize this with the factor S for “splash damage”. Adding these to
the model we have:

h ≤ tg,c ·Kg,c · (dg · Sg · ug + dc · Sc · uc) (2)

Every constraint forms a convex region. Because the feasible region
of the problem is formed by intersecting each of these regions, it itself is
convex. The objective is a convex function, and so there is a guaranteed
optimal solution. The parameters depend on the game itself, but under
this model there indeed is optimal balance for each game as stated in the
following theorem:

Theorem 3 Expression (1) with a specified t has a unique minimum sub-
ject to the constraints given by (2).

3 A Simple Example

In this section we illustrate the simplest possible example that is not com-
pletely trivial. Assume that the combat is one player versus one oppo-
nent and that the player is able to attack continuously. The player will
have two options for resource generating skills, and three options for re-
source consuming skills. Denote these as g1, g2, c1, c2, c3. There are then
six possible builds, each with a possibly different length of engagement:
tg1,c1 , tg1,c2 , tg1,c3 , tg2,c1 , tg2,c2 , tg2,c3 . Denote the hit points of the oppo-
nent as h, and the uptime of the resource consuming skill in each build as
ug1,c1 , ug1,c2 , ug1,c3 , ug2,c1 , ug2,c2 , ug2,c3 . We then have the conditions given
below.

h ≤ tg1,c1 (dc1ug1,c1 + dg1(1− ug1,c1))

h ≤ tg1,c2 (dc2ug1,c2 + dg1(1− ug1,c2))

h ≤ tg1,c3 (dc3ug1,c3 + dg1(1− ug1,c3))

h ≤ tg2,c1 (dc1ug2,c1 + dg2(1− ug2,c1))

h ≤ tg2,c2 (dc2ug2,c2 + dg2(1− ug2,c2))

h ≤ tg2,c3 (dc3ug2,c3 + dg2(1− ug2,c3))

Here the parameters are the values ui,j and h. The set of feasiable
solutions are all combinations of ti,j and di that satisfy all of the above.
We are particularly interested in the five values dg1 , dg2 , dc1 , dc2 , dc3 because
these are what will be used to balance the game.

For the purpose of an example, we’ll choose parameters as given below.

Resources
g1 g2 c1 c2 c3
5 10 −10 −20 −100

Uptimes
ui,j c1 c2 c3
g1 1/3 1/5 1/21
g2 1/2 1/3 1/11

Above the Uptimes are computed from the resources generated and
consumed. For the purpose of illustration we specify 6000 hit points in
which case we arrive an the following optimal solution in which every build
completes the battle in 30 seconds with the damage values below.

Optimal Damage
g1 g2 c1 c2 c3

175 150 250 300 700

4 A Real Example

For an example that is more realistic, we turn to the 2012 ARPG Diablo
3. In this game a player chooses 6 skills to use, from a pool of approxi-
mately one hundred. Typically one of these would be a resource generator,
one a resource consumer, and four utility skills. The the two years follow-
ing release the developer (Blizzard Entertainment) continued the balancing
process through 6 substantive patches.

While some utility skills require or generate resources, we focus here
on the primary source of generation and consumption. The Witch Doctor
character class in particular has 19 skills that can be considered generators,
and 15 skills that can be considered consumers. Denote each of these sets
as G and C. Hence |G| = 19 and |C| = 15. This results in 285 constraints
and an objective with 34 terms.

Minimize
∑

b∈G∪C

(
t− tb

)2
Subject to h ≤ tg,c ·Kg,c · (dg · Sg · ug + dc · Sc · uc) ∀(g, c) ∈ G × C

This is a particularly nice example for academic studies because ev-
ery player’s profile is available online. The evolution of game balance
can be illustrated in the figure below that gives each player’s selection
of resource consumption skills at three selected timestamps. The verti-
cal axis is the percentage of characters using each particular skill. Note
that these do not add up to 100% because players are allowed to choose
multiple or none of these skills (although it is typically a poor decision to
do so). Players can freely change their skills, so it is reasonable to ex-
pect that the skills a player chooses are the skills he or she prefers to use.

Code Skill Code Skill
S1 Zombie Bears S10 Lob Blob Bomb
S2 Explosive Beast S11 Corpse Bomb
S3 Leperous Zombies* S12 Kiss of Death
S4 Wave of Zombies* S13 Dire Bats
S5 Undeath S14 Vampire Bats*
S6 Pile On* S15 Plague Bats
S7 Lumbering Cold* S16 Hungry Bats
S8 Acid Rain S17 Cloud of Bats
S9 Slow Burn
*Some skills were introduced, removed, or redesigned

Notice in particular that in 2012 the vast majority of players used just
two skills, S1 and S8. The fact that the graph is closer to uniform in 2014
shows that the changes to the game improved balance. It also illustrates
just how difficult it is to balance a game: for instance less than a tenth of
a percentage of the population choose to use some skills such as S12 and
S16.

As a specific example of the balancing process, let us consider skill S17.
It is a low-range attack with that increases in damage while holding your
position in combat, such a dynamic is called triangularity[4]. A model such
as the one presented in this paper gives a starting point, but ultimately a
designer should expect to perform corrections as they discover how players
feel about the game [4]. In the original version of the game this skill dealt
334% of a player’s weapon damage, which was low enough that the vast
majority of players considered it to be completely unusable. Then in an
attempt to encourage usage, its damage was increased to 600% where it
became nearly dominant. In the third correction its damage was reduced
to 525% where it is no longer dominant, but this was an overcompensation
to the point that only about 4% of the player base continued to use it.

5 Conclusions

Game balance is an important but often elusive goal in the development of
video games. In the ARPG genre one aspect of balance is in the diversity of
build selection that players can choose from. Players will ultimately have
to make choices that impact the effectiveness of their character and the
enjoyment they obtain from the game. In a balanced game these will not
be opposing choices: players would not feel forced into a single dominant
build. We characterized the effectiveness of a build in terms of the efficiency
in time taken during combat encounters. The model given in section 2
uses the resource generation and consumption scenario and further takes
into account the gameplay mechanics of splash damage and kiting. The
parameters of the model are based on the mechanics of each individual
skill, the damage assigned to each skill can then be determined to minimize
differences in effectiveness between builds.

References

[1] Dave Morris Andrew Rollings. Game Architecture and Design. New
Riders, Indianapolis, Indiana, 2003.

[2] Jesper Juul. Casual Revolution. The MIT Press, Cambridge, Mas-
sachusetts, 2010.

[3] Maja Matijasevic Mirko Suznjevic, Ognjen Dobrijevic. Hack, slash, and
chat: A study of players’ behavior and communication in mmorpgs.
Network and Systems Support for Games (NetGames), 2008.

[4] Jesse Schell. The Art of Game Design. Elsevier, Burlington, 2010.

