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Abstract

This thesis is a presentation of some of my research activities while at Clemson University. In

particular this includes joint work on the factorization of eigenforms and their relationship to Rankin-

Selberg L-values, and nearly holomorphic eigenforms. The main tools used on the factorization of

eigenforms are linear algebra, the j function, and the Rankin-Selberg Method. The main tool used

on nearly holomorphic modular forms is the Rankin-Cohen bracket operator.

The main results are Theorems 2.3.1, 3.1.1, and 3.5.4.

Theorem 2.3.1 identifies the pairs of nearly holomorphic eigenforms which multiply to an

eigenform.

Theorem 3.1.1 identifies, under some technical conditions, which eigenforms can divide other

eigenforms.

Theorem 3.5.4 states a condition under which a certain set of vectors of L values are neces-

sarily independent.
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Chapter 1

Introduction

This chapter provides necessary background material for the main results of the thesis. The

required definitions and theorems are given, along with an occasional sketch of a proof. For more

information and a deeper study, readers can see an introductory text on modular forms such as the

text by Diamond and Shurman [8], Koblitz [23], Miyake [27], or Shimura [33].

To summarize, modular forms of level one form a graded ring. A very special type of modular

form is called an eigenform. A natural question to ask, then, is if the product of two eigenforms is

again an eigenform. This question has been answered by Ghate [16] and Duke [9]. Part of my thesis

focuses on a similar problem: when is the product of an eigenform with any modular form again

an eigenform. The other part of this thesis answers the original question for nearly holomorphic

modular forms.

1.1 The Upper Half Plane

The first fundamental structure in the study of modular forms is the upper half plane,

H := {z ∈ C|Im (z) > 0}, shown in Figure 1.1.1. Of particular interest will be the fundamental

domain, H, when acted upon by SL2(Z); this is the standard action and is defined below. In

particular SL2(Z) acts from the left on H, with resulting fundamental domain given in Figure 1.1.2.

We write the quotient as SL2(Z)\H. In general there is a similar construction for any congruence

subgroup Γ of SL2(Z) to construct Γ\H. We will not say more on this as we are working in full

level (meaning Γ = SL2(Z)). However, do note that while some of these results should generalize to
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Figure 1.1.1: The Upper Half Plane
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higher levels, it is not clear how many of them do. See Section 1.8 for a discussion on why it is not

obvious how to generalize these to higher levels.

The aforementioned action is obtained via the standard action:a b

c d

 z =
az + b

cz + d

which is often called a fractional linear transformation or Möbius transformation. More on this

action can be found in a text on complex analysis such as Conway’s [6]. Under this action we obtain

the fundamental domain as a complete set of coset representatives, shown in Figure 1.1.2.
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1.2 Modular Forms

Periodic functions have Fourier series expansions. In particular say f(z + 1) = f(z), then

we may write

f(z) =

∞∑
n=−∞

an(f)qn

where q = e2πiz. This is often called the q-expansion of f . Modular forms in particular, defined

below, have such an expansion due to the transformation law.

Definition 1.2.1. A modular form of weight k for SL2(Z) is a holomorphic function on H and at

∞ (meaning its Fourier series expansion has only terms with nonnegative exponent on q) satisfying

the following transformation law.

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

a b

c d

 ∈ SL2(Z).

A modular function satisfies the same transformation law, but need only be meromorphic.

A special type of modular form are called cuspidal.

Definition 1.2.2. A modular form f is said to be a cuspidal modular form if its Fourier expansion

has no constant term: a0 = 0. This could also be thought of as f vanishes at ∞.

As there are no modular forms of odd weight or weight less than 4 for Γ = SL2(Z), modular

forms in this thesis will always be of even weight at least 4.

We will denote the space of cusp forms of weight k by Sk, and the space of all modular

forms of weight k by Mk. These are both C-vector spaces.

The growth rate of a modular form is the asymptotic growth rate of the Fourier coefficient

an(f) as n goes to infinity. To illustrate growth rates we use big-oh, big-omega, and big-theta

notation. In particular f(n) grows at rate O(g(n)) if there is a constant c such that beyond some

point, f(n) ≤ cg(n). Similarly f(n) grows at rate Ω(f(n)) if there is a constant c such that beyond

some point, f(n) ≥ cg(n), and f(n) grows at rate Θ(g(n)) if f(n) grows at Ω(g(n)) and O(g(n)).

For modular forms of weight k, the growth rate is O(nk−1), and for some forms (such as

Eisenstein series) this is sharp: that is, Θ(nk−1). Cusp forms grow much slower, O(n
k−1

2 +ε) for all

ε > 0. This is a nontrivial result; for more information see any introductory text on modular forms,

3



such as page 122 of [23].

We now consider the simplest examples of modular forms.

Example 1.2.3. The weight k Eisenstein series is a modular form, given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where σk−1(n):=
∑
m|nm

k−1 is an extension of the sum of divisors function and Bk is the

kth Bernoulli number. Because we use Eisenstein series throughout this work we give the first few

terms in the Fourier expansion of the small weight Eisenstein series:

E4 = 1 + 240q + 2160q2 + Ω(q3)

E6 = 1− 504q − 16632q2 + Ω(q3)

E8 = 1 + 480q + 41920q2 + Ω(q3)

E10 = 1− 264q + 135432q2 + Ω(q3)

E12 = 1 +
65520

691
q +

134250480

691
q2 + Ω(q3) ∈ 1

691
Z[[q]]

E14 = 1− 24q − 196632q2 + Ω(q3)

The simplest example of a cuspidal modular form is the Delta function, given as below.

Example 1.2.4. A weight 12 cusp form is ∆(z) given by

∆(z) = q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 + Ω(q4) ∈ Z[[q]].

When the space Sk of cusp forms of weight k is of dimension one, we denote the unique

modular form with first coefficient equal to 1 as ∆k = Ea4E
b
6∆ where k = 12 + 4a+ 6b. Due to their

importance, Eisenstein series Ek and the Delta function ∆ will reappear throughout the sequel. In

particular as will be seen below every noncuspidal modular form has an “Eisenstein series part” and

every cuspidal modular form has a factor of ∆.

While not truly a modular form because it is only meromorphic at ∞, another important

example is the j-function (also called the j-invariant) which is a modular function of weight zero for

SL2(Z). This function has numerous applications from elliptic curves to group theory.

4



Figure 1.2.6: Dimension of Mk and Sk

k dim(Mk) dim(Sk)

4 1 0
6 1 0
8 1 0
10 1 0
12 2 1
14 1 0
16 2 1
18 2 1
20 2 1
22 2 1
24 3 2
26 2 1
28 3 2
30 3 2

Definition 1.2.5. The j-function is the weight zero modular function defined by:

j =
E3

4

E3
4 − E2

6

.

Our use of the j-function is in its role in the Eisenstein polynomials, defined in the following

section on page 9.

The dimension of the space of modular forms of weight k is well known and quasiperiodic

with period 12. In particular

dim(Mk) =



⌈
k
12

⌉
, k 6≡ 0, 2 mod (12)⌈

k
12

⌉
+ 1, k ≡ 0 mod (12)⌈

k
12

⌉
− 1, k ≡ 2 mod (12)

and for k ≥ 4, dim(Mk+12) = dim(Mk) + 1. The first couple dimensions are tabulated in Figure

1.2.6. The dimension of Mk and Sk are always one different: dim(Mk) = dim(Sk) + 1. This is

because,

Mk = Ek ⊕ Sk,

where Ek = 〈Ek〉C is always 1 dimensional.
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When using the dimension in a computer program, it is more convenient to use a non-

piecewise formula for the dimension, in particular:

dim(Mk) = 1 +

⌊
k − 3

12

⌋
+ 1−

⌈
k%12

12

⌉

where a%b denotes a reduced modulo b. The following remark illuminates a curious tidbit of infor-

mation.

Remark 1.2.7. Mk has finite dimension, but yet every f ∈ Mk has an infinite Fourier series

expansion.

In particular almost all of the terms in the Fourier series expansion are redundant, and

knowing the first dim(Mk) coefficients of the Fourier expansion of a modular form is enough to

know the modular form (In general knowing dim(Mk) coefficients is not always sufficient unless if

they are the indeed the first dim(Mk) coefficients).

There is a basis of Mk which makes this clear:

{∆aEb|12a+ b = k, “E0 = E2 = 1”}.

The above is the so called diagonal basis, because each factor of ∆ forces precisely one

Fourier coefficient to be zero: ∆ = q + Ω(q2),∆2 = q2 + Ω(q3), ...,∆a = qa + Ω(qa+1).

Another useful spanning set of Mk involves only E4, E6 and ∆:

{∆aEb4E
c
6|12a+ 4b+ 6c = k}.

Sometimes this set is theoretically useful. However it is computationally less useful because it is

in general not a basis and involves much larger coefficients (Recall that the coefficients of ∆ grow

considerably slower than those of Eisenstein series). Calculating the coefficients of ∆ is nontrivial

computationally, but must be done in both cases. Precomputing coefficients of the Eisenstein is

trivial compared to when one starts to perform arithmetic upon them.

Note that this thesis deals with factoring modular forms, and so we need to know something

about how modular forms of different weights interact.

Fact 1.2.8. Let f ∈Mk, g ∈Ml, then fg ∈Mk+l.

6



From this we see that the collection of all modular forms a graded complex algebra where the

grading comes from the weight. By graded C-algebra we mean that the collection can be decomposed

as ⊕∞k=4Mk satisfying the above fact, where each Mk is in fact a C-vector space.

1.3 Zeros of Modular Forms

In this section we give some of the results on the zeros of modular forms, in particular that

of Eisenstein Series. While none of the proofs directly use zeros, they are useful in providing insight

to some of our results.

The number of zeros of a weight k modular form f is given by the valence formula:

v∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∑
P∈Γ\H
P 6=i,ρ

vP (f) =
k

12

where vP (f) is the order of vanishing of f at P ; i and ρ = eiπ/3 are the second and third roots of

−1 respectively. See the discussion in the text by Koblitz [23, p. 115] for more information.

Let Ek be an Eisenstein series. Then it is known that all of the zeros of Ek in the fundamental

domain lie on the unit circle. In particular all the zeros lie between i and ρ. This is shown in [29] by

counting the zeros on the arc in question and showing that there are enough to exhaust the valence

formula. In fact all of the zeros other than i and ρ are simple, and equidistributed (meaning that a

certain collection of arcs of angle 2π
k each have precisely one root). See Figures 1.3.1 and 1.3.2 for

examples of where these zeros of Eisenstein series lie.

One can also compare the zeros of Ek and Ek+12. Any zero of Ek+12 lies between two

consecutive zeros of Ek, as is discussed in [28]. Little appears to be known about the specific

relationship with other Eisenstein series.

In Chapter 3 we will use the Eisenstein polynomial ϕk(x) related to the zeros of the weight k

Eisenstein series. This polynomial appeared in [7] and [14], although we coined the term Eisenstein

polynomial. We now define ϕk(x). Let j be the j-function as defined in Definition 1.2.5. Now j

maps the fundamental domain to the entire complex plane (including ∞). In particular it maps the

above arc of the unit circle to the interval [0, 1728] of the real line. Actually it maps according the

top diagram (Figure 1.3.3). Section A along the real axis is the interval [0, 1728] corresponding to

section A in the fundamental domain.

7



Figure 1.3.1: The three zeros of E36
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Write k = 12n + s where s ∈ {0, 4, 6, 8, 10, 14}. Then Ek has n zeros other than i and ρ.

Label these as a1, ..., an. Then the j-zeros of Ek are j(a1), ..., j(an) along with possibly 0 and 1728

corresponding to ρ and i respectively. We use these j-zeros to construct the Eisenstein polynomial.

Definition 1.3.4. Let j, a1, ..., an be as above. Then ϕk(x) :=
∏

(x− j(ai)).

Note that ϕk(x) is monic with rational coefficients, as shown in [15]. It is observed in

the same paper that ϕk(x) appears to be irreducible with full Galois group. They verified this for

k ≤ 172. In Chapter 4 we verify the irreducibility of ϕk(x) up to weight 2500.

1.4 L-functions

Associated to any modular form is a corresponding L-function, constructed as follows. Let

f =
∑
anq

n be a modular form, then for Re(s)� 0, the L-function associated to f is defined as

L(f, s) :=

∞∑
n=1

an
ns

which is the Mellin transform of f . Note that a0 does not affect the L-function. These functions

exist for both cuspidal and noncuspidal modular forms. L-functions have important applications in

and outside of mathematics, although my work does not touch on their applications.

Figure 1.4.1: The partial sums of L(∆, 7)

The L-function will not converge for ev-

ery s. However, for s at least one more than the

growth rate, the L-function always converges.

As an example, consider L(∆, 7) =∑∞
n=1

τ(n)
n7 ≈ 0.877 (Calculated algebraically us-

ing a thousand coefficients). The point s = 7

was chosen because that is well within the region

of convergence. In particular τ(n) has growth

rate O(n5.5+ε), so that L(∆, s) converges for all

s with Re(s) > 6.5. See [2] for more on these

convergence rates.

Note that because τ takes on both pos-

itive and negative values, the partial sums are

9



not monotonic, as illustrated in Figure 1.4.1. One can see the approximations for other values of

L(∆, s) in Figure 1.4.3.

More generally we will use the Rankin-Selberg convolution L-function of two modular forms

f =
∑
anq

n and g =
∑
bnq

n, for Re(s)� 0;

L(f × g, s) :=

∞∑
n=1

anbn
ns

.

We will be interested in the specific case when both f and g are cuspidal eigenforms, and

s = wt(g). A L-value is the value of a L-function at a specified argument s. These are important

values of functions in mathematics.

As an example consider L(∆, E4, 9.6) = −4/B4 ·
∑∞
n=1

τ(n)σ3(n)
n9.6 ≈ 96.12. To see an il-

lustration of the partial sums (The convergence is not too fast as 9.6 is closer to the boundary of

convergence at 9.5), see Figure 1.4.2

Figure 1.4.2: The partial sums of L(∆, E4, 9.6)

10



Figure 1.4.3: Approximations of L(∆, t)
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1.5 Hecke Operators

A Hecke Operator Tn,k is a specific linear operator defined on Mk. Following [23] we

introduce the double-coset definition of a Hecke Operator for level 1. If f is a modular form, and

n ∈ Z≥0, then

Tn(f) := nk/2−1
∑

f |[ΓαΓ]k

where ΓαΓ is a double-coset. Define f |[ΓαΓ]k :=
∑
f |[αγj ]k, f |[αγ]k := (cz + d)−kf(γz) with the

summations over all double cosets of Γ and Γ in ∆n(1,Z,Z) =


a b

c d

 ∈ Z2×2

∣∣∣∣∣∣∣ det
a b

c d

 = n


and all coset representatives of Γ∩α−1Γα in Γ respectively. For our work this definition is cumber-

some, and so we will introduction several equivalent formulations of a Hecke Operator. The version

we will use is a functional description:

(Tn,k (f)) (z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

Another approach to the Hecke Operator is to define it on a basis of SL2(Z). In particular

one could use the following matrices for prime p. Consider the matrices U =

0 1

1 0

 and V =

1 1

1 0

 that form a basis for SL2(Z). We can decompose Tp in terms of two simpler operators: Up

and Vp defined via:

Upf(z) := f(pz)

Vpf(z) :=
1

p

m−1∑
j=0

f

(
z + j

m

)
,

in which case we obtain Tp = Up + pk−1Vp.

We shall also give a formulation of Tn by how it acts on Fourier expansions. Say f(z) =∑
aiq

i and Tn(f)(z) =
∑
bi(n)qi, we wish to identify the bi. Computationally, this is how a Hecke

operator may be calculated. In particular bi =
∑
dk−1ani/d2 , the summation is over d dividing

gcd(n, i). In the event that n = p is prime, this boils down to api + pk−1ai/p for p|i and merely

bi = api for p - i.

Note that the ith term in the Fourier expansion of Tn(f) requires information about ani,

12



the n× ith term of f .

Fact 1.5.1. • Tn,k preserves the cusp space Sk.

• Tn,k preserves the Eisenstein space E = 〈Ek〉C.

• Tn,kTm,k = Tm,kTn,k for all n,m.

We can now define the functions of interest in this thesis: Hecke eigenforms.

Definition 1.5.2. A modular form f ∈ Mk is said to be an eigenform if for all n ∈ N there are

λn ∈ C so that Tn,kf = λnf . That is, f is an eigenvector for all of the Tn simultaneously. An

eigenform is said to be normalized if the first nonzero coefficient is 1. For cuspidal eigenforms this

will always be the q coefficient. In fact, the coefficients of normalized cuspidal eigenforms are their

eigenvalues.

We have already seen some examples of eigenforms. In particular an Eisenstein series as

we have defined it is always eigenform. The small weight cuspforms {∆12, ...,∆22,∆26} are also

eigenforms. All of these examples come trivially from the fact that Tn,k is acting on a one-dimensional

space. It is more interesting to see that cuspidal eigenforms not only exist for other weights, but

that there is always a proper number of them. The following theorem is common in the literature,

such as [23].

Theorem 1.5.3. Sk has a basis of eigenforms. Further, if m = dim(Sk), then all of the eigenvalues

of Tn,k lie in a degree m extension of Q. Let f denote a normalized cuspidal eigenform. Then

an(f) = λn, where λn is an eigenvalue of Tn,k.

The Hecke Polynomial Tn,k(x) is the characteristic polynomial of Tn,k on Sk. It is a poly-

nomial of degree dim(Sk).

Definition 1.5.4. The Hecke Algebra is the algebra generated over Z by all Hecke Operators

{Tn,k}n∈N,k∈2Z≥2
. Furthermore Tpa1

1 ·····p
ar
r

= Tpa1
1
· · · · · Tparr where Tpl = Tpl−1Tp − pTpl−2Tp.

While we will not use the Hecke algebra itself; a conjecture we reference (Maeda’s Conjec-

ture) makes a strong claim regarding this algebra.

Also of note are Euler products. In particular an Euler Product is an infinite product
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indexed by the primes. In the case of a normalized eigenform f =
∑
anq

n, we have for Re(s)� 0

L(f, s) =
∏
p

(
1− app−s + pk−1−2s

)−1
.

1.6 Petersson Inner Product

The space of modular forms of weight k is actually an inner product space under the Pe-

tersson inner product. This is defined, for f or g cuspidal, as

〈f, g〉 :=

∫
Γ\H

f(z)g(z)yk
dxdy

y2
.

The domain of integration is over a fundamental domain Γ\H and the measure used for integration is

dxdy
y2 . This is a Γ-invariant measure, so that any fundamental domain may be chosen for integration.

Hecke operators interact very nicely with this inner product. In particular Hecke operators

are self-adjoint with respect to the Petersson inner product, meaning that 〈Tf, g〉 = 〈f, Tg〉.

For more information see any introductory textbook such as [23] for details.

1.7 The Rankin-Selberg Convolution

The Rankin-Selberg Convolution is a very general technique for relating inner products and

L-values. Let f be a weight k cuspidal modular form, and g a cuspidal modular form of weight such

that 〈f ·Es, g〉 makes sense. Our specific need will be the following equation relating the Petersson

inner product to an L-function:

〈f · Es, g〉 = (4π)−(s+k−1)Γ(s+ k − 1)
∑
n≥1

anbn
ns+k−1

.

This is proven in [13], with the key being that ysf(z)g(z) is P -invariant, where P ⊂ Γ contains

matrices of the form

? ?

0 ?

.

Note that the right hand side above is essentially an L-function. There is a constant out in
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front, but the idea behind the Rankin-Selberg convolution in this case is the following:

〈f,Esg〉 = const · L(f, g).

One can already see how this might be applied to our situation: Esg is a product of modular

forms. What if it is an eigenform? In Chapter 3 we will consider this and choose f appropriately.

1.8 Maeda’s Conjecture

Maeda’s Conjecture was first introduced in [19] in 1997. The conjecture makes a very strong

claim regarding the structure of the Hecke algebra. The precise statement is below.

Conjecture 1.8.1 (Maeda, [19]). The Hecke algebra over Q of Sk(SL2(Z)) is simple (that is, a

single number field) whose Galois closure over Q has Galois group isomorphic to a symmetric group

Sm (with m = dimSk(SL2(Z))).

The conjecture has been verified for numerous weights. It was verified to weight 469 in the

original paper. Later Farmer and James [12] show for prime weights less than 2000 that Tn,p(x) has

full Galois group. While Maeda’s conjecture is actually quite strong, we need only the irreducibility

implied by it. In particular, a corollary of Maeda’s conjecture is that Tn,k(x) is irreducible for every

choice of n and k. This aspect of the conjecture has been verified up to weight 4096 by Ghitza

([18]). Probably this can be pushed much further by checking modulo p; as Ghitza appears to have

actually calculated every Tn(x). More could be said along these lines by calculating all the different

types of factorizations that appear modulo p. Some of the current work requires only irreducibility

over Q, while some of it requires irreducibility over slightly larger fields. In particular over the fields

K referred to in the following proposition. This proposition is proved in Section 3.6.

Proposition 1.8.2. Let P (x) ∈ Q[x] be a degree d polynomial. Let KP be its splitting field. Assume

[KP : Q] = d!, i.e., Gal(KP /Q) ∼= Sd. If P factors over K, then [K : Q] ≥ d.

In particular this tells us that if a polynomial has full Galois group, then it is irreducible

over all fields of small degree.

As a final comment regarding Maeda’s conjecture, the analogous statement with level Γ0(N)

is false. In particular, when p divides the level, Tp,k may not be diagonalizable, and thus factors
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over a field of smaller degree than allowable by Maeda’s conjecture. For example on S12(Γ0(2)),

T2(x) = x2(x2 + 24x+ 2048) which clearly is not irreducible.

1.9 Eisenstein Series Conjecture

This section regards a conjecture about the Eisenstein polynomials. In particular recall

ϕk(x) :=
∏

(x − j(ai)) as defined in Section 1.3. The conjecture below arises from computational

evidence, and appeared in [7] and [14] albeit not explicitly stated.

Conjecture 1.9.1 (Cornelissen [7] and Gekeler [15]). The Eisenstein polynomial ϕk(x) is irreducible

with full symmetric group as Galois group.

Essentially ϕk(x) encodes the nontrivial roots of Ek. The qualifier essentially was used

because the roots of ϕk(x) are not actually the roots of the Eisenstein series. Instead they are the

roots after going through the j map. Refer back to Figure 1.3.3 for an illustration of j zeros. We

will use the irreducibility of this function in Section 3.4. To verify the irreducibility of this function

we calculated ϕk(x) modulo several primes for k up through 2500. This used an equation presented

in [21] which relates ϕk(x) to j:

Er
Ea4E

b
6∆c

= ϕk(j(τ)),

where 4a + 6b + 12c = r, with 0 ≤ a ≤ 2, 0 ≤ b ≤ 1. Note that this is a nontrivial problem in

particular because of the required computation of the powers of j.

Also note that one could in theory show the full conjecture by finding ϕk(x) modulo enough

primes to find enough different types of factorizations so that its Galois group must be large enough

to contain them all: in particular the full symmetric group.

1.10 Galois Actions

First recall that a field is said to be Galois if the size of the automorphism group is as large

as possible: that is if | aut(F)| = dimQ(F).

The Galois group of a polynomial is the Galois group of its splitting field, where the splitting

field of a polynomial is the smallest field that contains all its roots.

Let f =
∑
anq

n be an eigenform with first nonzero coefficient equal to 1. Then all of
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the Fourier coefficients of f are contained in a finite extension of Q, so we consider the field Ff =

Q(a0, a1, ...). In particular [Ff : Q] <∞. Every space Mk of modular forms is finite dimensional, so

that if we write a basis as fi =
∑
an,iq

n, then we have that the composition, F, of all the Ff is still

finite dimensional.

Hence we consider the Galois group G of F, and define an action of G on f . In particular

let σ ∈ G and define:

σ(f) :=
∑

σ(an)qn

Now suppose α is a root of a polynomial f , and let σ be in the Galois group of f . Then

f(σ(α)) = σ(f(α) = 0, so that σ permutes the roots of f , but never takes a root to a nonroot.

Now that we know how to apply a Galois action to a polynomial, one may ask how it

interacts with the Hecke operators. In particular, both Tn,k(σ(f)) and σ(Tn,k(f)) make sense and

are in fact equal

σ(Tnf) = Tnσ(f)

which is clear from the fact that Mk has a rational basis, and σ fixes Q.

1.11 The Rankin-Cohen Bracket Operator

There are many ways that one may obtain a modular form from other modular forms. Most

trivially is just that of multiplication: if f and g are modular forms, we can obtain a new modular

form fg, which is of weight wt(f)+wt(g). We will now generalize multiplication to something called

the Rankin-Cohen bracket operator.

First let f (a) denote the ath derivative of f , where by derivative we mean the normalized

derivative:

f (1)(z) =
1

2πi

d

dz
f(z).

Definition 1.11.1. The Rankin-Cohen bracket operator [f, g]j : Mk ×Ml →Mk+l+2j is given by

[f, g]j :=
∑
r+s=j

(−1)a
(
j + k − 1

s

)(
j + l − 1

r

)
f (r)(z)g(s)(z).

These are the unique normalized bilinear operators on these spaces. See [25] for more

information on these operators.
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There are several nice properties of this bracket operator. Some of these will be proved

in Chapter 2. In particular, the zeroth bracket, [·, ·]0, is merely multiplication. Even brackets are

symmetric, while odd brackets are antisymmetric. In particular we have the properties presented in

the following lemmas. Lemma 1.11.2 is obvious from the fact that odd brackets are antisymmetric.

Lemma 1.11.3 will be proven in chapter 2.

Lemma 1.11.2. Let f be a modular form. Also let g and h be nonzero modular forms, exactly one

of which is cuspidal. Then [f, f ]2j+1 = 0 and [g, h]n 6= 0 for all n.

Lemma 1.11.3. Let Ek and El be Eisenstein series. Then [Ek, El]n = 0 if and only if k = l and n

is odd.

1.12 The Nearly Holomorphic Setting

In the previous section we saw how to construct a new modular form from two modular

forms. Now we ask how to construct a new modular form from just one modular form. One attempt

along these lines would be to differentiate a modular form. However the derivative of a modular

form is not modular. (It is, however, holomorphic).

Consider the derivative of a modular form and add the appropriate term to make the result

modular. This extra term is not holomorphic, but is not holomorphic in a very specific manner.

Following the terminology of [25] we call these nearly holomorphic modular forms (although not

all nearly holomorphic modular forms arise in this way). The specific construction comes from the

Maass Shimura Operator whose details follow.

Definition 1.12.1. We define the Maass-Shimura Operator δk on f ∈Mk(Γ) by

δk(f) =

(
1

2πi

(
k

2iIm (z)
+

∂

∂z

)
f

)
(z).

We then define composition as δ
(2)
l := δl+2 ◦ δl :=

(
1

2πi

)2 ( k+2
2iIm(z) + ∂

∂z

)(
k

2iIm(z) + ∂
∂z

)
.

Similarly construct δ
(r)
k by iterated composition, and take δ

(0)
k := id. A function of the form δ

(r)
k (f)

is called a nearly holomorphic modular form of weight k + 2r as in [25]. We call k the holomorphic

weight, 2r the non-holomorphic weight. Note that two forms of different weight of either type are

necessarily different functions.
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Now for a modular form f , δk(f) is a nearly holomorphic modular form of weight k + 2.

However, not all nearly holomorphic modular forms of weight k + 2 arise in this way. In particular,

consider δ
(2)
k−2(g) where g is a modular form of weight k− 2. This is completely outside the range of

δk(Mk), which contains only forms of holomorphic weight k and non-holomorphic weight 2.

Hence we construct the space of all nearly holormophic modular forms to be the space

generated by all such constructions. Denote this space by M̃k(Γ). Because we assume Γ = SL2(Z),

we will shorten this to M̃k.

Note that the image of δk is contained in M̃k+2. Also, the notation δ
(r)
k (f) will only be used

when f is in fact a holomorphic modular form.

Now we shall try to illuminate these Maass-Shimura operators a little. In particular as

defined δk is an operator on Mk, and not explicitly on M̃k. However, recall that everything in M̃k

is a linear combination of Maass-Shimura operators applied to modular forms:

k∑
2i=4

δ
(k−i)
2i f2i

where f2i is a weight 2i modular form. The map δk is defined on this by composing the operators

δk and δk−2i
2i to obtain

δk

k∑
2i=4

δ
(k−i)
2i f2i =

k∑
2i=4

δ
(k+1−i)
2i f2i.

We will define structures similar to the classical setting in this nearly holomorphic setting.

In particular we will define Hecke operators Tn,k : M̃k → M̃k following [24] as

(Tn,k (f)) (z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

As in Section 1.5, there are other ways to formulate the Hecke operator. However, as this

definition does not depend on the underlying space, it is the one we shall use to generalize the notion

of a Hecke operator.

We define an eigenform identically to the definition in the classical setting, as stated below.

Definition 1.12.2. A nearly holomorphic modular form f of weight k is an eigenform if it is an

eigenvector for Tn,k for n = 1, 2, ....
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1.13 Previous Results

Several authors have worked on problems regarding products of eigenforms. This is a similar

question, and a special case of divisibility of eigenforms: a first situation to consider. Such an example

is our consideration of products of nearly holomorphic modular forms in chapter 2.

The earliest works of this nature are that of Ghate [16] and Duke [9] whom simultaneously

and independently solved the problem “When is the product of two eigenforms again an eigenform?”

The answer to this question is that the product is an eigenform only when it is trivial. That is: if

the dimension of the range is 1, then it is forced to be an eigenform. It turns out that this is also

necessary, resulting in exactly 16 cases that the product of eigenforms is again an eigenform.

For example, dim(M10) = 1, and E4 · E6 ∈ M10 so that E4 · E6 is an eigenform because it

is forced to be for dimension consideration.

Now this does not address the question of multiple eigenforms. In particular while E12 ·E22

is not an eigenform, maybe if we allow a third factor we can “fix it up” and obtain an eigenform.

Emmons and Lanphier [11] showed that this is not the case. In particular they showed that the

product of many eigenforms is an eigenform only when it is forced to be for dimension consideration.

There is also a question regarding obtaining eigenforms from the Rankin-Cohen Bracket

Operator. In particular Lanphier and Takloo-Bighash [26] showed that the Rankin-Cohen Bracket

Operator of two eigenforms is only an eigenform when it is forced to be by dimension consideration.

The attentive reader has probably noticed that all of the previously mentioned work is all of

the same nature: something is an eigenform only when it is forced to be by dimension consideration.

The present work follows along the same lines: the result is true when it is trivial, and then some

work ensues to show that in fact the trivial case is the only case.

While the current work is all in full level, it should be noted that progress has been made

on this type of question in higher level. Ghate [17] and Emmons [10] showed for some congruence

subgroups that the product of eigenforms is only an eigenform when forced to be, and in a currently

unpublished work Johnson [20] showed the same for Γ1(N).
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Chapter 2

Results on Nearly Holomorphic

Modular Forms

2.1 Introduction

It is well known that the modular forms of a specific weight for the full modular group form

a complex vector space, and the action of the algebra of Hecke operators on these spaces has received

much attention. For instance, we know that there is a basis for such spaces composed entirely of

forms called Hecke eigenforms which are eigenvectors for all of the Hecke operators simultaneously.

Since the set of all modular forms (of all weights) for the full modular group can be viewed as a

graded complex algebra, it is quite natural to ask if the very special property of being a Hecke

eigenform is preserved under multiplication. This problem was studied independently by Ghate [16]

and Duke [9] and they found that it is indeed quite rare that the product of Hecke eigenforms is

again a Hecke eigenform. In fact, they proved that there are only a finite number of examples of this

phenomenon. Emmons and Lanphier [11] extended these results to an arbitrary number of Hecke

eigenforms. The more general question of preservation of eigenforms through the Rankin-Cohen

bracket operator (a bilinear form on the graded algebra of modular forms) was studied by Lanphier

and Takloo-Bighash [25, 26] and led to a similar conclusion. One can see [31] or [34] for more on

these operators.

The work mentioned above focuses on eigenforms which are “new” everywhere. It seems
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natural to extend these results to eigenforms which are not new. In this chapter, we consider

modular forms which are “old” at infinity in the sense that the form comes from a holomorphic form

of lower weight. More precisely, we show that the product of two nearly holomorphic eigenforms is

an eigenform for only a finite list of examples (see Theorem 2.3.1). It would also be interesting to

consider the analogous question for forms which are old at one or more finite places.

Note that the results in this chapter have been published in the Ramanujan Journal [3], and

are joint work not only with my advisors but with a colleague Catherine Trentacoste.

2.2 Nearly Holomorphic Modular Forms

Let Γ = SL2(Z) be the full modular group and let Mk(Γ) represent the space of level Γ

modular forms of even weight k. Let f ∈ Mk(Γ) and g ∈ Ml(Γ). Throughout k, l will be positive

even integers and r, s will be nonnegative integers. Recall that we define the Maass-Shimura operator

δk on f ∈Mk(Γ) by

δk(f)(z) =

(
1

2πi

(
k

2iIm (z)
+

∂

∂z

)
f

)
(z).

Write δ
(r)
k := δk+2r−2 ◦ · · · ◦ δk+2 ◦ δk, with δ

(0)
k = id. A function of the form δ

(r)
k (f) is called a nearly

holomorphic modular form of weight k + 2r as in [25].

Recal that M̃k(Γ) denotes the space generated by nearly holomorphic forms of weight k and

level Γ.

Note that the image of δk is contained in M̃k+2(Γ). Also, the notation δ
(r)
k (f) will only be

used when f is in fact a holomorphic modular form.

We define the Hecke operator Tn : M̃k(Γ)→ M̃k(Γ) following [24], as

(Tn (f)) (z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

A modular form (or nearly holomorphic modular form) f ∈ M̃k(Γ) is said to be an eigenform

if it is an eigenvector for all the Hecke operators {Tn}n∈N.

The Rankin-Cohen bracket operator [f, g]j : Mk(Γ)×Ml(Γ)→Mk+l+2j(Γ) is given by

[f, g]j(z) :=
1

(2πi)j

∑
a+b=j

(−1)a
(
j + k − 1

b

)(
j + l − 1

a

)
f (a)(z)g(b)(z)
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where f (a) denotes the ath derivative of f .

Proposition 2.2.1 ([3], Prop 2.2). Let f ∈Mk(Γ), g ∈Ml(Γ). Then

δ
(r)
k (f)δ

(s)
l (g) =

s∑
j=0

(−1)j
(
s

j

)
δ

(s−j)
k+l+2r+2j

(
δ

(r+j)
k (f)g

)
.

Proof. Note that, δk+l+2r

(
δ

(r)
k (f)g

)
= δ

(r+1)
k (f)g + δ

(r)
k (f)δl(g), and use induction on s.

Combining the previous proposition and the Rankin-Cohen bracket operator gives us the

following expansion of a product of nearly holomorphic modular forms.

Proposition 2.2.2 ([3], Prop 2.3). Let f ∈Mk(Γ), g ∈Ml(Γ). Then

δ
(r)
k (f)δ

(s)
l (g)(z) =

r+s∑
j=0

1(
k+l+2j−2

j

)
 s∑
m=max(j−r,0)

(−1)j+m

(
s
m

)(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+r+m+j−1

r+m−j
)

 δ
(r+s−j)
k+l+2j ([f, g]j(z)) .

Proof. Lanphier [25, Theorem 1] gave the following formula:

δ
(n)
k (f(z))× g(z) =

n∑
j=0

(−1)j
(
n
j

)(
k+n−1
n−j

)(
k+l+2j−2

j

)(
k+l+n+j−1

n−j
)δ(n−j)
k+l+2j ([f, g]j(z)) .

Substituting this into the equation in Proposition 2.2.1, we obtain

δ
(r)
k (f)δ

(s)
l (g)(z) =

s∑
m=0

(−1)m
(
s

m

)
δ

(s−m)
k+l+2r+2m

r+m∑
j=0

(−1)j
(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+2j−2

j

)(
k+l+r+m+j−1

r+m−j
)δ(r+m−j)
k+l+2j ([f, g]j(z))

 .
Rearranging this sum we obtain the proposition.

We will also use the following proposition which shows how δk and Tn almost commute.

Proposition 2.2.3 ([3], Prop 2.4). Let f ∈Mk(Γ). Then

(
δ

(m)
k (Tnf)

)
(z) =

1

nm

(
Tn

(
δ

(m)
k (f)

))
(z)

where m ≥ 0.

23



Proof. Write F (z) = f

(
nz + bd

d2

)
. Note that

∂

∂z
(F (z)) =

n

d2

∂f

∂z

(
nz + bd

d2

)
, so that

δk (Tnf) (z) = nk−1
∑
d|n

d−k
d−1∑
b=0

(
1

2πi

)[
k

2iIm(z)
F (z) +

∂

∂z
(F (z))

]

= nk−1
∑
d|n

d−k
d−1∑
b=0

(
1

2πi

)[
k

2iIm(z)
f

(
nz + bd

d2

)
+

n

d2

∂f

∂z

(
nz + bd

d2

)]
.

Next one computes that

Tn (δk(f)) (z) = n

nk−1
∑
d|n

d−k
d−1∑
b=0

(
1

2πi

)(
k

2iIm(z)
f

(
nz + bd

d2

)
+

n

d2

∂f

∂z

(
nz + bd

d2

))
from which we see

(δk (Tnf)) (z) =
1

n
(Tn (δk(f))) (z).

Now induct on m.

We would like to show that a sum of eigenforms of distinct weight can only be an eigenform

if each form has the same set of eigenvalues. In order to prove this, we need to know the relationship

between eigenforms and nearly holomorphic eigenforms.

Proposition 2.2.4 ([3], Prop 2.5). Let f ∈Mk(Γ). Then δ
(r)
k (f) is an eigenform for Tn if and only

if f is. In this case, if λn denotes the eigenvalue of Tn associated to f , then the eigenvalue of Tn

associated to δ
(r)
k (f) is nrλn.

Proof. Assume f is an eigenform. So (Tnf) (z) = λnf(z). Then applying δ
(r)
k to both sides and

applying Proposition 2.2.3 we obtain the following:

Tn

(
δ

(r)
k (f)

)
(z) = nrλn

(
δ

(r)
k (f)

)
(z).

So δ
(r)
k (f) is an eigenform.

Now assume that δ
(r)
k (f) is an eigenform. Then Tn

(
δ

(r)
k (f)

)
(z) = λn

(
δ

(r)
k (f)

)
(z). Using
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Proposition 2.2.3, we obtain δ
(r)
k (Tnf) (z) =

λn
nr
δ

(r)
k (f)(z) = δ

(r)
k

(
λn
nr
f

)
(z). Since δ

(r)
k is injective,

(Tnf) (z) =
λn
nr
f(z).

Hence f is an eigenform.

Now our result on a sum of eigenforms with distinct weights follow.

Proposition 2.2.5 ([3], Prop 2.6). Suppose that {fi}i is a collection of modular forms with distinct

weights ki. Then

t∑
i=1

aiδ

(
n− ki2

)
ki

(fi) (ai ∈ C∗) is an eigenform if and only if every δ

(
n− ki2

)
ki

(fi) is an

eigenform and each function has the same set of eigenvalues.

Proof. By induction we only need to consider t = 2.

(⇐) : If Tn

(
δ

(r)
k (f)

)
= λδ

(r)
k (f), and Tn

(
δ
( k−l2 +r)
l (g)

)
= λδ

( k−l2 +r)
l (g), then by linearity

of Tn,

Tn

(
δ

(r)
k (f) + δ

( k−l2 +r)
l (g)

)
= λ

(
δ

(r)
k (f) + δ

( k−l2 +r)
l (g)

)
.

(⇒) : Suppose δ
(r)
k (f)+δ

( k−l2 +r)
l (g) is an eigenform. Then by Proposition 2.2.4 and linearity

of δ
(r)
k , f + δ

( k−l2 )
l (g) is also an eigenform. Write

Tn

(
f + δ

( k−l2 )
l (g)

)
= λn

(
f + δ

( k−l2 )
l (g)

)
.

Applying linearity of Tn and Proposition 2.2.3 this is

Tn(f) + n
k−l

2 δ
( k−l2 )
l (Tn(g)) = λnf + λnδ

( k−l2 )
l (g).

Rearranging this we get

Tn(f)− λnf = δ
( k−l2 )
l

(
λng − n

k−l
2 Tn(g)

)
.

Now note that the left hand side is holomorphic and of positive weight, and that the right

hand side is either nonholomorphic or zero, since the δ operator sends all nonzero modular forms to
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so called nearly holomorphic modular forms. Hence both sides must be zero. Thus we have

Tn(f) = λnf and Tn(g) = λnn
−(k−l)

2 g.

Therefore f is an eigenvector for Tn with eigenvalue λn, and g is an eigenvector for Tn with

eigenvalue λnn
−(k−l)

2 . By Proposition 2.2.4 we have that δ
( k−l2 )
l (g) is an eigenvector for Tn with

eigenvalue λn. Therefore f and δ
( k−l2 )
l (g) are eigenvectors for Tn with eigenvalue λn. So δ

(r)
k (f) and

δ
( k−l2 +r)
l (g) must have the same eigenvalue with respect to Tn as well. Hence δ

(r)
k (f) and δ

( k−l2 +r)
l (g)

must be eigenforms with the same eigenvalues.

Using the above proposition we can show that when two holomorphic eigenforms of different

weights are mapped to the same space of nearly holomorphic modular forms that different eigenvalues

are obtained.

Lemma 2.2.6 ([3], Lemma 2.7). Let l < k and f ∈ Mk(Γ), g ∈ Ml(Γ) both be eigenforms. Then

δ
( k−l2 )
l (g) and f do not have the same eigenvalues.

Proof. Suppose they do have the same eigenvalues. That is, say g has eigenvalues λn(g), then by

Proposition 2.2.4 we are assuming that f has eigenvalues n
k−l

2 λn(g). We then have from multiplicity

one there are constants c, c0 such that

f(z) =

∞∑
n=1

cn
k−l

2 λn(g)qn + c0

=
1

(2πi)(k−l)/2
∂(k−l)/2

∂z(k−l)/2

∞∑
n=1

cλn(g)qn + c0

=
1

(2πi)(k−l)/2
∂(k−l)/2

∂z(k−l)/2 g(z) + c0

which says that f is a derivative of g plus a possibly zero constant. However, from direct computation,

this is not modular. Hence we have a contradiction.

We shall need a special case of this lemma.

Corollary 2.2.7 ([3], Cor 2.8). Let k > l and f ∈Mk(Γ), g ∈Ml(Γ). Then δ
( k−l2 +r)
l (g) and δ

(r)
k (f)

do not have the same eigenvalues.
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From [26] we know that for eigenforms f, g, that [f, g]j is a eigenform only finitely many

times. Hypothetically, however, it could be zero. In particular by the fact that [f, g]j = (−1)j [g, f ]j ,

f = g and j odd gives [f, g]j = 0. Hence we need the following lemma, where Ek denotes the weight

k Eisenstein series normalized to have constant term 1.

Lemma 2.2.8 ([3], Lemma 2.9). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ). In the following

cases [f, g]j 6= 0:

Case 1: f a cusp form, g not a cusp form.

Case 2: f = g = Ek, j even.

Case 3: f = Ek, g = El, k 6= l.

Proof. Case 1: Write f =

∞∑
j=1

Ajq
j , g =

∞∑
j=0

Bjq
j . Then a direct computation of the q-coefficient of

[f, g]j yields

A1B0(−1)j
(
j + k − 1

j

)
6= 0.

Case 2: Using the same notation, a direct computation of the q coefficient yields

A0B1

(
j + l − 1

j

)
+A1B0

(
j + k − 1

j

)
= 2A0A1

(
j + k − 1

j

)
6= 0.

Case 3: This is proven in [26] using L-series. We provide an elementary proof here. With-

out loss of generality, let k > l. A direct computation of the q coefficient yields A0B1

(
j+l−1
j

)
+

A1B0

(
j+k−1
j

)
. Using the fact that A0 = B0 = 1, A1 = k/Bk, B1 = l/Bl, we obtain

−2l

Bl

(
j + k − 1

j

)
+ (−1)j

−2k

Bk

(
j + l − 1

j

)
.

If j is even, then both of these terms are nonzero and of the same sign. If j is odd, then we

note that for l > 4,

∣∣∣∣Bkk
(
j + k − 1

j

)∣∣∣∣ =

∣∣∣∣ (j + k − 1) · · · (k + 1)Bk
j!

∣∣∣∣ > ∣∣∣∣ (j + l − 1) · · · (l + 1)Bl
j!

∣∣∣∣ =

∣∣∣∣Bll
(
j + l − 1

j

)∣∣∣∣
using the fact that |Bk| > |Bl| for l > 4, l even. For l = 4, the inequality holds so long as j > 1. For

j = 1 the above equation simplifies to |Bk| > |Bl| which is true for (k, l) 6= (8, 4), with this remaining

cases handled individually. For j = 0, the Rankin-Cohen bracket operator reduces to multiplication.
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We will need the fact that a product is not an eigenform, given in the next lemma.

Lemma 2.2.9 ([3], Lemma 2.10). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ) both be cuspidal

eigenforms. Then δ
(r)
k (f)δ

(s)
l (g) is not an eigenform.

Proof. By Proposition 2.2.2 we may write δ
(r)
k (f)δ

(s)
l (g) as a linear combination of δ

(r+s−j)
k+l+2j ([f, g]j).

Then from [26], [f, g]j is never an eigenform. Hence by Proposition 2.2.4, δ
(r+s−j)
k+l+2j ([f, g]j) is never

an eigenform. Finally Proposition 2.2.5 tells us that the sum, and thus δ
(r)
k (f)δ

(s)
l (g) is not an

eigenform.

Finally, this last lemma is the driving force in the main result to come: one of the first two

terms from Proposition 2.2.2 is nonzero.

Lemma 2.2.10 ([3], Lemma 2.11). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ) both be eigenforms,

but not both cusp forms. Then in the expansion given in Proposition 2.2.2, either the term including

[f, g]r+s is nonzero, or the term including [f, g]r+s−1 is nonzero.

Proof. There are three cases.

Case 1: f = g = Ek. If r + s is even, then via Lemma 2.2.8, [f, g]r+s 6= 0 and it is clear

from Proposition 2.2.2 that the coefficient of [f, g]r+s is nonzero so we are done. If r+s is odd, then

[f, g]r+s−1 is nonzero. Now because wt(f) = wt(g), the coefficient of [f, g]r+s−1 is nonzero. This is

due to the fact that if it were zero, after simplification we would have k = −(r + s) + 1 ≤ 0, which

cannot occur.

Case 2: If f is a cusp form and g is not then by Lemma 2.2.8, [f, g]r+s, and thus the term

including [f, g]r+s is nonzero.

Case 3: If f = Ek, g = El, k 6= l. Again by Lemma 2.2.8, [f, g]r+s, and thus the term

including [f, g]r+s is nonzero.

2.3 Main Result

Recall that Ek is a weight k Eisenstein series, and let ∆k be the unique normalized cuspidal

form of weight k for k ∈ {12, 16, 18, 20, 22, 26}. We have the following theorem.

Theorem 2.3.1 ([3], Thm 3.1). Let δ
(r)
k (f) ∈ M̃k+2r(Γ) and δ

(s)
l (g) ∈ M̃l+2s(Γ) both be eigen-

forms. Then δ
(r)
k (f)δ

(s)
l (g) is not a eigenform aside from finitely many exceptions. In particular

δ
(r)
k (f)δ

(s)
l (g) is a eigenform only in the following cases:
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1. The 16 holomorphic cases presented in [9] and [16]:

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14,

E4∆12 = ∆16, E6∆12 = ∆18, E4∆16 = E8∆12 = ∆20,

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆12 = E14∆12 = ∆26.

2. δ4 (E4) · E4 = 1
2δ8 (E8)

Proof. By Proposition 2.2.2 we may write

δ
(r)
k (f)δ

(s)
l (g) =

r+s∑
j=0

αjδ
(r+s−j)
k+l+2j ([f, g]j) .

Now, by Proposition 2.2.5 this sum is an eigenform if and only if every summand is an eigen-

form with a single common eigenvalue or is zero. Note that by Corollary 2.2.7, αjδ
(r+s−j)
k+l+2j ([f, g]j)

are always of different eigenvalues for different j. Hence for δ
(r)
k (f)δ

(s)
l (g) to be an eigenform, all

but one term in the summation must be zero and the remaining term must be an eigenform.

If both f, g are cusp forms, apply Lemma 2.2.9. Otherwise from Lemma 2.2.10 either the

term including [f, g]r+s or the term including [f, g]r+s−1 is nonzero. By [26] this is an eigenform

only finitely many times. Hence there are only finitely many f, g, r, s that yield the entire sum,

δ
(r)
k (f)δ

(s)
l (g), an eigenform. Each of these finitely many quadruples were enumerated and all eigen-

forms found. See the following comments for more detail.

Remark 2.3.2. In general 2δk (Ek) ·Ek = δ2k
(
E2
k

)
. However, for k 6= 4, this is not an eigenform.

Once we know that δ
(r)
k (f)δ

(s)
l (g) is in general not an eigenform, we have to rule out the

last finitely many cases. In particular consider each eigenform (and zero) as leading term [f, g]n in

Proposition 2.2.2. From [26] we know that there are 29 cases with g a cusp form (12 with n = 0),

81 cases with f, g both Eisenstein series (4 with n = 0). By case we mean instance of [f, g]n that

is an eigenform. We also must consider the infinite class with f = g = Ek and r + s odd, where

[f, g]r+s = 0.
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For the infinite class when f = g and r+s is odd we do have [f, g]r+s = 0. By Lemma 2.2.10

the [f, g]r+s−1 term is nonzero. If r + s − 1 = 0, then this is covered in the n = 0 case. Otherwise

r + s − 1 ≥ 2. This is an eigenform only finitely many times. In each of these cases one computes

that the [f, g]0 term is nonzero. Thus because there are two nonzero terms, δ
(r)
k (f)δ

(s)
l (g) is not an

eigenform.

The 16 cases with n = 0 are the 16 holomorphic cases. Now consider the rest. In the last

finitely many cases we find computationally that there are two nonzero coefficients: the coefficient

of [f, g]0, and [f, g]r+s. Now [f, g]0 6= 0, [f, g]r+s 6= 0 and so in these cases δ
(r)
k (f)δ

(s)
l (g) is not an

eigenform.

The typical case, however, will involve many nonzero terms such as

δ4 (E4) · δ4 (E4) =
−1

45
[E4, E4]2 + 0 · δ10 ([E4, E4]1) +

10

45
δ

(2)
8 ([E4, E4]0)

=
−1

45

(
42 · E4

∂2

∂z2
E4 − 49

(
∂

∂z
E4

)2
)

+
10

45
δ

(2)
8 (E8) ,

δ6 (E6) · E8 =
−1

14
[E6, E8]1 +

3

7
δ14 ([E6, E8]0) =

−1

14

(
6E6

∂

∂z
E8 − 8E8

∂

∂z
E6

)
+

3

7
δ14 (E6E8)

which cannot be eigenforms because of the fact that there are multiple terms of different holomorphic

weight.

30



Chapter 3

Divisibility of an Eigenform by

another Eigenform

3.1 Introduction and Statement of Main Results

There have been several works regarding the factorization of eigenforms for the full modular

group Γ = SL2(Z). In particular Rankin [30] considered products of Eisenstein series. Independently

Duke [9] and Ghate [16] show that the product of two eigenforms is an eigenform in only finitely

many cases. More generally Emmons and Lanphier [11] show that the product of any number of

eigenforms is an eigenform only finitely many times. The present chapter will consider a factorization

that allows one factor to be any modular form. The results in this chapter are joint work with my

advisors Kevin James and Hui Xue; the corresponding paper has been accepted pending revisions

which are currently under review by the proceedings of the American Mathematical Society.

It is shown in Sections 3.2, 3.3, and 3.4 that given some technical conditions the only

eigenforms that can divide other eigenforms come from one dimensional spaces. This is a corollary

of Theorems 3.1.3, 3.1.4, and 3.1.5.

Corollary 3.1.1. If Tn(x) and ϕk(x) are irreducible over appropriately small fields, then the only

eigenforms that divide other eigenforms come from one dimensional spaces: M4, M6, M8, M10, S12,

M14, S16, S18, S20, S22 and S26.

Recall that there is a basis of eigenforms for the space Sk of cuspforms of weight k on
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SL2(Z). Together Sk and the Eisenstein series Ek generate the full space Mk of modular forms

of weight k. Further, every noncuspidal eigenform is an Eisenstein series. Additionally, a basis of

eigenforms is necessarily an orthogonal basis under the Petersson inner product [8, p. 163]. For more

information on these topics, see any basic text on modular forms, such as [8] or [23].

In this chapter we investigate an eigenform h divided by an eigenform f with quotient g

which is a modular form. That is,

h = fg. (3.1.2)

Without loss of generality we assume that all eigenforms considered are normalized so that

the first nonzero coefficient is one. The dividend h could be either cuspidal, or an Eisenstein series.

Likewise the divisor f could be either cuspidal or an Eisenstein series. It is impossible to divide an

Eisenstein series by a cuspidal eigenform and obtain a quotient which is again a modular form (or

even holomorphic), so our problem naturally breaks into three cases to consider,

Case (1) Both the dividend h and divisor f are cuspidal eigenforms.

Case (2) The dividend h is a cuspidal eigenform, but the divisor f is an Eisenstein series.

Case (3) Both the dividend h and divisor f are Eisenstein series.

Each of these cases leads to a theorem related to the factorization of some polynomials. In Cases

1 and 2 these polynomials are the characteristic polynomials, Tn,k(x), of the nth Hecke operator of

weight k. In the third case this polynomial is the Eisenstein polynomial ϕk(x), whose roots are the

j-zeroes of the weight k Eisenstein series Ek (See Definition 1.3.4).

In Case 1, both dividend h and divisor f are cuspidal eigenforms. In this case the quotient

g cannot be cuspidal. The following theorem gives a comparison of the dimension of Swt(h) and

Mwt(g), the spaces which contain the dividend h and quotient g, respectively.

Theorem 3.1.3. Suppose a cuspidal eigenform f divides another cuspidal eigenform h with quotient

g a modular form. Then either dim(Swt(h)) = dim(Mwt(g)) or for every n ≥ 2, Tn,wt(h)(x) is

reducible over the field Ff (See Definition 3.2.1 for Ff ).

In Case 2, the divisor f is an Eisenstein series, but the dividend h is still a cuspidal modular

form. Hence the quotient g must be cuspidal. In this case our result is as follows.
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Theorem 3.1.4. Suppose an Eisenstein series f divides a cuspidal eigenform h with quotient g a

modular form. Then either dim(Swt(h)) = dim(Swt(g)) or for every n ≥ 2, Tn,wt(h)(x) is reducible

over Q.

In Case 3, the dividend h is an Eisenstein series, and so the quotient g must be noncuspidal.

In this case in place of the Hecke polynomial we are led to consider the Eisenstein polynomial ϕk(x)

of weight k (See Definition 1.3.4). Our result is as follows.

Theorem 3.1.5. Suppose an Eisenstein series f divides another Eisenstein series h with quotient

g a modular form. Then either dim(Mwt(h)) = dim(Mwt(g)) or the polynomial ϕwt(h)(x) is reducible

over Q.

In each of the above theorems there is either an equality of the dimensions of the appropriate

spaces, or information about the factorization of a certain polynomial, Tn,wt(h)(x) or ϕwt(h)(x). For

small weights it is known that these polynomials do not factor, and so the dividend h and quotient

g must come from spaces of the same dimension. For higher weights it is conjectured that this is

still the case. See Section 3.6 for details.

3.2 Proof of Theorem 3.1.3

Theorem 3.1.3 tells us that if we write h = fg where h and f are cuspidal eigenforms,

then either Tn,wt(h)(x) is reducible over Ff , the field generated by the Fourier coefficients of f , or

dim(Swt(h)) = dim(Mwt(g)).

We now present the formal definition of Ff .

Definition 3.2.1. Given a normalized eigenform f , let Ff denote the field generated over Q by its

Fourier coefficients. That is, if f =
∑
n≥0 anq

n then Ff = Q(a0, a1, a2, ...).

Recall that Ff/Q is a finite extension and dim(Ff ) ≤ dim(Swt(f)) [32, p. 81].

The following special subspaces of Sk will play an important role in our proofs.

Definition 3.2.2. Let F ⊆ C be a field. A subspace S ⊆ Sk is said to be F-rational if it is stable

under the action of Gal(C/F), i.e. σ(S) = S for all σ ∈ Gal(C/F). Here we define the action of an

automorphism σ on modular forms through their Fourier coefficients.
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We consider such spaces to obtain information about the Hecke polynomials. The following

crucial lemma gives a condition guaranteeing all of the Hecke polynomials for a certain weight are

reducible.

Lemma 3.2.3. If S is a proper F-rational subspace of Sk and S contains an eigenform, then all the

Hecke polynomials of weight k are reducible over F.

In all known cases the Hecke polynomials Tn,k(x) are irreducible. Hence the contrapositive

is more practical.

Corollary 3.2.4. If for some n, Tn,k(x) is irreducible over F, then no proper F-rational subspace

of Sk contains an eigenform.

We now prove Lemma 3.2.3.

Proof of Lemma 3.2.3. Let S ⊂ Sk be a proper F-rational subspace containing an eigenform h.

Then define

R := 〈σ(h)|σ ∈ Gal(C/F)〉C ≤ S,

which is also a proper F-rational subspace of Sk. Then Sk = R ⊕ R⊥, both of which are proper

and stable under the action of the Hecke operators because they have eigenform bases. Denote by

Tn,k|R(x) the characteristic polynomial of Tn,k restricted to R. Note that Tn,k(x) = Tn,k|R(x) ·

Tn,k|R⊥(x). Since R is F-rational, Tn,k|R(x) ∈ F[x]. Also Tn,k(x) ∈ F[x] (actually Tn,k(x) ∈ Z[x]).

So Tn,k|R⊥(x) ∈ F[x]. Therefore Tn,k(x) is reducible over F for all n.

We are now ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. Suppose we have the factorization h = fg where f and h are cuspidal

eigenforms. Then because dimension cannot decrease when multiplying modular forms, dim(Swt(h)) ≥

dim(Mwt(g)). If dim(Swt(h)) = dim(Mwt(g)), the proof is complete. So we assume dim(Swt(h)) >

dim(Mwt(g)). Let {g1, ..., gb} be a rational basis of Swt(g). Then the space fMwt(g) =
〈
fEwt(g), fg1, fg2, ..., fgb

〉
is an Ff -rational subspace of Swt(h) of dimension dim(Mwt(g)). Because dim(Swt(h)) > dim(Mwt(g)),

it is a proper Ff -rational subspace of Swt(h). On the other hand, this space contains an eigenform

h = fg. Hence by Lemma 3.2.3 we know that Tn,wt(h)(x) is reducible over Ff for all n.

From the dimension formula [8] for spaces of modular forms we find that dim(Swt(h)) =

dim(Mwt(g)) occurs only as in the following cases.
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Lemma 3.2.5. Write h = fg where h and f are both cuspidal eigenforms. Then dim(Swt(h)) =

dim(Mwt(g)) in only the following cases.

wt(f) = 12, wt(g) ≡ 4, 6, 8, 10, 12, 14 mod (12),

wt(f) = 16, wt(g) ≡ 4, 6, 10, 12 mod (12),

wt(f) = 18, wt(g) ≡ 4, 8, 12 mod (12),

wt(f) = 20, wt(g) ≡ 6, 12 mod (12),

wt(f) = 22, wt(g) ≡ 4, 12 mod (12),

wt(f) = 26, wt(g) ≡ 12 mod (12),

On the other hand if dim(Swt(h)) = dim(Mwt(g)), Lemma 3.2.5 implies that wt(f) is one

of 12, 16, 18, 20, 22, or 26. Thus dim(Swt(f)) = 1. In these cases we can use linear algebra to

construct a factorization h = fg. In particular the basis {Ewt(g), g1, ..., gb} of Mwt(g) maps to the

basis {fEwt(g), fg1, ..., fgb} of Swt(h) so that everything including the eigenforms in Swt(h) has a

factor of f . Also note that if dim(Swt(h)) = 1, then the above reduces into the cases that are treated

in [9] and [16].

Corollary 3.2.6. If h = fg with h and f cuspidal eigenforms and for some n, Tn,wt(h)(x) is

irreducible over every field F of degree less than dim(Swt(h)), then f comes from a one dimensional

space, i.e. wt(f) = 12, 16, 18, 20, 22, 26.

We note that while part of the hypothesis regarding Tn,k(x) used in the above corollary may

appear strange, it follows from Maeda’s Conjecture [19], see Section 3.6.

3.3 Proof of Theorem 3.1.4

Theorem 3.1.4 tells us that if we write h = fg where h is a cuspidal eigenform and f is an

Eisenstein series, then either Tn,wt(h)(x) is reducible over Q or dim(Swt(h)) = dim(Swt(g)).

Proof of Theorem 3.1.4. Suppose we have a factorization h = fg where h is a cuspidal eigenform

and f is an Eisenstein series. Then because dimension cannot decrease when multiplying modular

forms, dim(Swt(h)) ≥ dim(Swt(g)). If dim(Swt(h)) = dim(Swt(g)), the proof is complete. So we assume

dim(Swt(h)) > dim(Swt(g)). Let {g1, ..., gb} be a rational basis of Swt(g). Then the space fSwt(g) =
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〈fg1, ..., fgb〉 is a rational subspace of Swt(h) of dimension dim(Swt(g)). Because dim(Swt(h)) >

dim(Swt(g)), it is a proper rational subspace of Swt(h). On the other hand, this space contains an

eigenform h = fg. Hence by Lemma 3.2.3 we know that Tn,wt(h)(x) is reducible over Q for all n.

From the dimension formula [8] for spaces of modular forms we find that dim(Swt(h)) =

dim(Swt(g)) occurs only in the following cases.

Lemma 3.3.1. Write h = fg where h is a cuspidal eigenform and f is an Eisenstein series. Then

dim(Swt(h)) = dim(Swt(g)) in only the following cases:

wt(f) = 4, wt(g) ≡ 0, 4, 6, 10 mod (12),

wt(f) = 6, wt(g) ≡ 0, 4, 8 mod (12),

wt(f) = 8, wt(g) ≡ 0, 6 mod (12),

wt(f) = 10, wt(g) ≡ 0, 4 mod (12),

wt(f) = 14, wt(g) ≡ 0 mod (12),

On the other hand if dim(Swt(h)) = dim(Swt(g)), Lemma 3.3.1 implies that wt(f) is one of

4, 6, 8, 10, or 14. Thus dim(Mwt(f)) = 1. In these cases we can use linear algebra to construct a

factorization h = fg. In particular the basis {g1, ..., gb} of Swt(g) maps to the basis {fg1, ..., fgb}

of Swt(h) so that everything including the eigenforms in Swt(h) has a factor of f . Also note that if

dim(Swt(h)) = 1, then the above reduces to the cases that are treated in [9] and [16].

Corollary 3.3.2. Let h = fg with h a cuspidal eigenform, f an Eisenstein series and for some

n, Tn,wt(h)(x) be irreducible over Q. Then, f comes from a one dimensional space. i.e. wt(f) =

4, 6, 8, 10, 14.

Again we note the connection of our hypothesis to Maeda’s Conjecture [19], see Section 3.6.

3.4 Proof of Theorem 3.1.5

Theorem 3.1.5 tells us that if we write h = fg where h and f are both Eisenstein series,

then either the Eisenstein polynomial ϕwt(h)(x) of weight k is reducible over Q or dim(Mwt(h)) =

dim(Mwt(g)).
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Recall that the Eisenstein polynomial ϕk(x) is monic with rational coefficients. See [7] or

[15] for more information on this function.

Proof of Theorem 3.1.5. Suppose h = fg where both f and h are Eisenstein series. Then

ϕwt(f)(x) divides ϕwt(h)(x). Hence either ϕwt(f)(x) is a constant, a constant multiple of ϕwt(h)(x)

or ϕwt(h)(x) is reducible.

If ϕwt(f)(x) is a constant, then f must be one of E4, E6, E8, E10, or E14. Thus by comparing

the roots of g and h, dim(Mwt(h)) = dim(Mwt(g)).

If ϕwt(f)(x) is a constant multiple of ϕwt(h)(x) then dim(Mwt(f)) = dim(Mwt(h)), and thus

g must be one of E4, E6, E8, E10, or E14. However, then f, g, and h are all Eisenstein series, which

by [9] and [16] can only occur if dim(Mwt(f)) = dim(Mwt(g)) = dim(Mwt(h)) = 1.

From the dimension formula [8] for spaces of modular forms we find that dim(Mwt(h)) =

dim(Mwt(g)) occurs only in the following cases.

Lemma 3.4.1. Write h = fg where h and f are both Eisenstein series. Then dim(Mwt(h)) =

dim(Mwt(g)) in only the following cases:

wt(f) = 4, wt(g) ≡ 0, 4, 6, 10 mod (12),

wt(f) = 6, wt(g) ≡ 0, 4, 8 mod (12),

wt(f) = 8, wt(g) ≡ 0, 6 mod (12),

wt(f) = 10, wt(g) ≡ 0, 4 mod (12),

wt(f) = 14, wt(g) ≡ 0 mod (12),

On the other hand if dim(Mwt(h)) = dim(Mwt(g)), Lemma 3.4.1 implies that wt(f) is one

of 4, 6, 8, 10, or 14. Thus dim(Mwt(f)) = 1. In these cases we can construct a factorization h = fg

as in the previous section. Again note that if dim(Swt(h)) = 1, then the above reduces to the cases

that are treated in [9] and [16].

Corollary 3.4.2. If h = fg with h and f Eisenstein series and ϕwt(h)(x) is irreducible over Q,

then f comes from a one dimensional space, i.e. wt(f) = 4, 6, 8, 10, 14.

We note that while part of the hypothesis regarding ϕwt(h)(x) used in the above corollary

may appear strange, it is conjectured to always be the case [7, 15].
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3.5 Relationship to L-values

In this section we investigate the relationship between the divisibility properties, discussed

in Section 3.3 and Rankin Selberg L-values. As in (3.1.2) we write h = fg to denote the eigenform f

dividing the eigenform h. Here the dividend h is a cuspform, and the divisor f = Es is an Eisenstein

series. Thus the quotient g is cuspidal. Let {h1, ..., hd} and {g1, ..., gb} be normalized eigenform

bases for Swt(h) and Swt(g) respectively, where d = dim(Swt(h)) and b = dim(Swt(g)).

Write g =
∑
n≥1 anq

n, and h =
∑
n≥1 bnq

n. The Rankin-Selberg convolution of L(g, s) and

L(h, s) is defined by

L(g × h, s) =
∑
n≥1

anbn
ns

.

With this notation the Rankin-Selberg method [4] yields

〈g,Esh〉 = (4π)−s+wt(g)−1Γ(s+ wt(g)− 1)L(g × h, s). (3.5.1)

We are particularly interested in the Rankin-Selberg L-function value at s = wt(h) − 1, hence we

use the following notation.

L(g, h) := L(g × h,wt(h)− 1).

We will employ Theorem 3.1.4 to give insight into the question of linear independence

of certain vectors of Rankin-Selberg L-values. Recall that eigenforms are orthogonal under the

Petersson inner product (〈hj , hi〉 = 0 for j 6= i). Let h1 = h = Erg and express g in terms of its

eigenform bases, g = c1g1 + · · ·+ cdgd. Then for each i 6= 1, we have,

c1〈Esg1, hi〉+ · · ·+ cb〈Esgb, hi〉 = 〈h1, hi〉 = 0.

Setting s = wt(h)−1 and dividing by (4π)−wt(h)−1(wt(h)−1)!, (3.5.1) yields for each i 6= 1,

c1L(Esg1, hi) + · · ·+ cbL(Esgb, hi) = 0. (3.5.2)
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We express the coefficients in 3.5.2 as a set of vectors,




L(g1, h2)

...

L(g1, hd)

 , ...,

L(gb, h2)

...

L(gb, hd)


 . (3.5.3)

Proposition 3.5.4. Let {h1, ..., hd} and {g1, ..., gb} be normalized eigenform bases for the spaces

Swt(h) and Swt(g) respectively, with wt(h) ≥ wt(g) + 4. If there is an n such that Tn,wt(h)(x) is

irreducible over Q and d > b, then the vectors of L values given in (3.5.3) are linearly independent

over C. If there is an n such that Tn,wt(h)(x) is irreducible over Q and d = b there is precisely one

dependence relation.

Proposition 3.5.4 can be restated in terms of the matrix M = M(g× h) whose columns are

the vectors in 3.5.3.

Proposition 3.5.4’. Let {h1, ..., hd} and {g1, ..., gb} be normalized eigenform bases for the spaces

Swt(h) and Swt(g) respectively, with wt(h) ≥ wt(g) + 4. If there is an n such that Tn,wt(h)(x) is

irreducible over Q, then the matrix M(g × h) is of full rank.

Proof. Suppose Tn,wt(h)(x) is irreducible for some n. There are two cases to consider.

Case 1: d > b. Suppose there is a solution [c1, ..., cb]
T to the matrix equation M−→x =

−→
0 .

We must show that [c1, ..., cb]
T =
−→
0 . We have, for each i = 2, 3, ..., d,

c1L(g1, hi) + · · ·+ cbL(gb, hi) = 0.

By using the Rankin-Selberg method and denoting G := c1g1 + · · · cbgb, we have 〈G ·Es, hi〉 = 0 for

i = 2, ..., d. Hence G · Es is orthogonal to each of h2, h3, ..., hd and so G · Es = ch1 for some c ∈ C.

Theorem 3.1.4 implies G = 0 and c = 0, which further implies that c1 = · · · = cb = 0.

Case 2: d = b. Because M is underdetermined there clearly are nonzero solutions to the

matrix equation M−→x =
−→
0 . We must show that M has nullity 1. Suppose there are two nonzero

solutions [c1, ..., cb]
T and [c′1, ..., c

′
b]
T to the matrix equation M−→x =

−→
0 . Similar to above we construct

G := c1g1 + · · · cbgb and G′ := c′1g1 + · · · c′bgb which satisfy, respectively, EsG = ch1, EsG
′ = c′h1

for some c, c′ ∈ C. Thus G and G′ are scalar multiples of each other. Thus any two solutions are

dependent.
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3.6 Conclusions and Maeda’s Conjecture

The main results of this chapter state that if there are eigenforms h and f and a modular

form g such that h = fg then either the modular spaces containing g and h must have the same

dimension or all of the Hecke polynomials for Swt(h) or the Eisenstein polynomial of weight wt(h)

are reducible, depending on whether h is cuspidal or not. In this section we discuss the unlikeliness

that these polynomials are reducible and we discuss the cases that the modular spaces containing g

and h do in fact have the same dimension. First, we state the following partial converse of Theorems

3.1.3, 3.1.4 and, 3.1.5.

Proposition 3.6.1. Let h and f be eigenforms.

Case (1) Both h and f are cuspidal eigenforms. If dim(Swt(h)) = dim(Mwt(h)−wt(f)), then there is

a modular form g such that fg = h.

Case (2) Only h is a cuspidal eigenform, f is an Eisenstein series. If dim(Swt(h)) = dim(Swt(h)−wt(f)),

then there is a cuspidal modular form g such that fg = h.

Case (3) Both h and f are Eisenstein series. If dim(Mwt(h)) = dim(Mwt(h)−wt(f)), then there is a

modular form g such that fg = h.

In each of Cases 1, 2, and 3 there are infinitely many examples of eigenforms f and h such that f

divides h as in Equation (3.1.2).

Proof. Here, we only consider one specific instance of Case 2. The other instances and cases follow

similarly. From Lemma 3.3.1 we see that there are twelve infinite classes such as wt(f) = 4, wt(h) ≡ 4

modulo 12. In each of these instances we can divide any cuspidal eigenform h of weight wt(h) by

E4. This is because dim(Swt(g)) = dim(Swt(h)) and so E4Swt(g) = Swt(h).

Example 3.6.2. We now present an explicit example of a factorization in which g is not an eigen-

form. Let {h1, h2} be an eigenform basis for S28. Note that {E16∆, E4∆2} is another, more explicit,

basis. Hence we can write h1 and h2 in terms of these functions, one of which is

E16∆ +

(
−14903892

3617
− 108

√
18209

)
E4∆2.
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Factoring E4 out of the above form gives the following equation expressed in terms of the

basis {E12∆,∆2} of S24,

E4

(
E12∆ +

(
−3075516

691
− 108

√
18209

)
∆2

)
= E16∆ +

(
−14903892

3617
− 108

√
18209

)
E4∆2.

Note in particular that the quotient, E12∆ +
(
− 3075516

691 − 108
√

18209
)

∆2, is not an eigen-

form and recall that E4 · E12 6= E16.

Call a factorization not counted by Proposition 3.6.1 exceptional; such a factorization would

involve a quotient g and dividend h that come from modular spaces of different dimensions. In light

of the following conjectures, we believe there are no exceptional factorizations. If this is true then

Proposition 3.6.1 is a full converse of Theorems 3.1.3, 3.1.4, and 3.1.5.

Conjecture 3.6.3 (Maeda, [19]). The Hecke algebra over Q of Sk(SL2(Z)) is simple (that is, a

single number field) whose Galois closure over Q has Galois group isomorphic to the symmetric

group Sn (with n = dimSk(SL2(Z))).

Maeda’s conjecture significantly restricts the factorization of the Hecke polynomial Tn,k(x).

Proposition 3.6.4 below tells us that if Tn,k(x) has full Galois group then Tn,k(x) is irreducible over

all fields F with [F : Q] < dim(Sk). This is significant because Ff used in Section 3.2 satisfies this

condition.

This conjecture appeared in [19], and in the same paper was verified for weights less than

469. Buzzard [5] showed that T2,k(x) is irreducible up to weight 2000. The fact that Tp,k(x) has full

Galois group was verified for p ≤ 2000 up to weight 2000 by Farmer and James [12]. Kleinerman

[22] showed that T2,k(x) is irreducible up to weight 3000. Alhgren [1] showed for all weights k that

if for some n, Tn,k(x) is irreducible and has full Galois group, then Tp,k(x) does as well for all

p ≤ 4, 000, 000. Finally from correspondence between Stein and Ghitza it is known that T2,k(x) is

irreducible up to weight 4096. In particular for weights less than 2000 Case 1 in Proposition 3.6.1 is

a full converse of Theorem 3.1.3, and for weights less than 4096 Case 2 in Proposition 3.6.1 is a full

converse of Theorem 3.1.4.

Proposition 3.6.4. Let P (x) ∈ Q[x] be a degree d polynomial. Let KP be its splitting field. Assume

[KP : Q] = d!. If P factors over K, then [K : Q] ≥ d.
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Proof. Suppose P is reducible over K and [K : Q] < d. Write P = QR, where Q,R ∈ K[x] are

polynomials of degrees d1, d2 and have splitting fields KQ,KR respectively. Then d1 + d2 = d and

so

d1!d2! ≥ [KQ : K] · [KR : K] ≥ [KQKR : K] ≥ [KP : K] > (d− 1)!,

which occurs if and only if d1 = 0 or d2 = 0. Hence one of Q or R is a constant, so that P is

irreducible over K.

Concerning the Eisenstein polynomials, ϕk(x), we have the following.

Conjecture 3.6.5 (Cornelissen [7] and Gekeler [15]). The Eisenstein polynomials ϕk(x) have full

Galois group Sn (with n = dim(Sk)), in particular they are irreducible over Q.

This question was first raised by Cornelissen [7] and Gekeler [15], who found that ϕk(x) has

full Galois group for all weights k ≤ 172. We have verified the irreducibility of ϕk(x) for weights up

to 2500.

We computed ϕk(x) modulo small primes p for weights through 2500 to verify that it is

irreducible. An equation presented in [21] and [7] gives the equation

Ek
Ea4E

b
6∆c

= ϕk(j(τ)),

where 4a + 6b + 12c = r, with 0 ≤ a ≤ 2, 0 ≤ b ≤ 1. For each weight computed there is a small

prime p such that ϕk(x) is indeed irreducible modulo p, and so ϕk(x) is irreducible over Q. There

is no reason other than runtime that the highest weight computed was 2500. In these weights Case

3 of Proposition 3.6.1 is a full converse of Theorem 3.1.5.

As a final remark we note that if conjectures 3.6.4 and 3.6.5 are true, then Proposition 3.6.1

is a full converse to all the main theorems. This means that an eigenform is divisible by another

eigenform precisely in the cases listed in Lemmas 3.2.5, 3.3.1, and 3.4.1.
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Chapter 4

Computations

4.1 Computing Examples

There were several examples computed that required the use of computer software, such as

Example 3.6.2.

These examples were computed in Maple using the basic properties of linear algebra and

q-expansions. In particular the first part of the q-expansions of the modular forms are computed.

Only the first dim(Mk) coefficients are needed to fully determine the modular form of weight k.

However, because Mk is a complex vector space we can treat these coefficients as vectors and merely

use linear algebra to solve for an example of the desired weight.

4.2 Computing ϕk(x)

The following is my approach with Maple to compute ϕk(x) =
∏

(x−ji), where the product

runs over all the j-zeros of Ek except for 0 and 1728. (Under the j mapping i and ρ correspond to

0 and 1728). Note that ϕk(x) is monic with rational coefficients. See [15] for more information on

this function.

Our computation will use an equation presented in [21] which gives an equality for f(j(τ)) =

ϕk(τ):

Ek
Ea4E

b
6∆c

= f(j(τ))
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where 4a+ 6b+ 12c = r, and 0 ≤ a ≤ 2, 0 ≤ b ≤ 1.

In theory we can just compute Fourier expansions of Ek, E4, E6, and ∆, then compute f(τ).

In practice this computation is somewhat nontrivial. This is because computing the right hand side

involves computing the symbolic polynomial f(j(τ)). My approach involved computing all required

powers of j and combining like terms. However, even with small coefficients and truncated series,

this still involves Ω
(
n3
)

computations.

4.3 Basic Idea

1. Given the highest weight max(k) we will compute, find and store ∆
q ,
(

∆
q

)2

, ...,
(

∆
q

)max(k)/12+1

.

Note that ∆
q is found by expanding

∏max(k)/12+1
k=1 (1−xk)24. Powers are then found iteratively

by multiplying by ∆
q .

2. Initialize an array to keep track of which weights we have found ϕk(x) to be irreducible.

3. Loop over primes p:

(a) Compute Ek mod p for all unfinished weights k up to max(k).

(b) Loop even weights from 16 to max(k):

i. Check to see if the prime is a bad prime for this weight, if so skip this weight. By bad

prime I mean if gcd(n(Bk)d(Bk)d(B4)d(B6), k) 6= 1 where d denotes denominator

and n denotes numerator. One could be more careful here, but it is not necessary to

be more careful.

ii. Compute the dimension of large space, that is the number of coefficients we will need

to compute to find f ; dim = 1 + bk−3
12 c+ 1− dk mod 12

12 e.

iii. Compute the LHS: this is all done as power series at first. The actual computation

finds (mod p) the coefficients of 1
qc , ..., q

0 in:

1

qc
·

Ek
Ea4E

b
6(

∆
q

)c .
iv. Compute the RHS: Construct a generic f(x) =

∑c
i=0 aix

i and evaluate it at x = j(q)

mod p, storing only the coefficients of 1
qc , ..., q

0.
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• j is computed mod p, using only the coeffiicients of 1
q , ..., q

c.

• ji is computed iteratively from ji−1, via

[
1

qc
, ..., qc

]
ji−1 :=

[
1

qc
, ..., qc

](
ji−1 ·

[
1

q
, ..., qc

]
j

)

where the notation [b1, ..., bn]g denotes g truncated to only keep the terms involv-

ing b1, ..., bn.

v. Find the coefficients ai in the right hand side. We already have the LHS and RHS.

Solve for ac−1 by using the linear equation formed by
[

1
qc−1

]
LHS =

[
1

qc−1

]
RHS.

Then iteratively solve for ac−i from
[

1
qc−i

]
LHS =

[
1

qc−i

]
RHS where i ranges from

1 to c.

vi. Construct the function f(x) using the above coefficients, and check if it is irreducible

modulo p. If it is, then set that it is completed, and store k, p, and f .

4. Verification: As a sanity check to make sure the algorithm is not obviously bugged, I took one

of the resulting functions, f = 23 + 25 ∗ x+ 22 ∗ x2 + x3 + 10 ∗ x4 + 27 ∗ x5 + 29 ∗ x6 + x7 + x8

for k = 100 and p = 37 and evaluated the LHS and RHS to 200 coefficients and checked that[
1
q8 , ..., q

200
]

(LHS −RHS) = 0.
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Chapter 5

Future Directions

There are many questions related to the topics of this thesis that have future potential. This

chapter provides some detail on these future directions.

5.1 The Rankin-Cohen Bracket Operator

Lanphier and Takloo-Bighash [26] showed that the Rankin-Cohen Bracket of two eigenforms

is only an eigenform when forced to be by dimension considerations. One can also consider the

question of divisibility in this situation. That is, we can ask a similar question as in Chapter 3. In

particular, if f and h are eigenforms and n is a nonnegative integer, when is there a modular form

g such that [f, g]n = h?

Investigating the above problem will likely lead one to ask when the Rankin-Cohen bracket

operator is injective. Hence another question I am interested in pursuing is characterizing for what

f, g, and n does [f, g]n = 0.

This question is surprisingly nontrivial. It would appear from computations that [f, g]n is

usually injective. However, there are some cases that it is clearly not. This is due to a zero, such as

for instance the following:

1. [∆a,∆b]1 = 0

2. [E4∆, E8∆2]1 = 0

3. [E4∆2, E8∆4]1 = 0, [E4∆3, E8∆6]1 = 0, [E4∆4, E8∆8]1 = 0, ...
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4. [E6∆2, E4∆10]2 = 0, [E6∆3,∆25]2 = 0, [E10∆9,∆585]2 = 0.

5. [E4, aE12 + b∆]5 = 0, ..., [E8, aE16 + bE4∆]1 = 0 for the appropriate choices of a, b ∈ R.

It is not at all clear what pattern (4) above follows. These computations (3,4) were from an ex-

haustive search of the brackets [f, g]n such that dim(Swt(f)+wt(g)+2n) = dim(Swt(f)) + dim(Swt(g)),

with wt(f) < 5000, wt(g) < 10000, 0 < n < 8. No example with n > 2 was found, and only three

cases with n = 2 were found. It would appear that all cases with n = 1 satisfy 2wt(f) = wt(g), or

wt(f) = wt(g) (if f = g and n is odd the bracket is trivially not injective).

In all other cases it was found that the coefficient is nonzero, and so [f, Swt(g)]n, [Swt(f), g]n

are necessarily injective (The coefficient calculated is [qwt(f)+wt(g)][f, g]n).

5.2 Nearly Holomorphic Modular Forms

We showed in Chapter 2 exactly when the product of two nearly holomorphic eigenforms is

again an eigenform. However, what if we allow a third factor of an eigenform, or more? It would

be interesting to see if the product of many nearly holomorphic eigenforms can nontrivially be an

eigenform.

This question actually relates to Rankin-Cohen bracket operators. In particular recall from

Chapter 2 that a product of nearly holomorphic modular forms can be expressed in terms of a sum

of Rankin-Cohen bracket operators. In that chapter we used a result regarding the Rankin-Cohen

bracket of two eigenforms. However, when one considers the product of many nearly holomorphic

eigenforms, the Rankin-Cohen bracket of an eigenform and a modular form arises. Hence we want

to know when this function is an eigenform. In the previous section we noted that there are Rankin-

Cohen brackets which are injective. The cases that the dimension of the of space of the operand

and output are the same lead to cases that [f, g]n is an eigenform, so there might be nontrivial cases

that the product of many nearly holomorphic eigenforms is an eigenform, although this would be

surprising.

5.3 Properties of ϕk(x)

In Chapter 3 we used a polynomial ϕk(x), which we called the Eisenstein polynomial of

weight k. In Chapter 4 we mention our computations of this polynomial modulo various primes.
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In that section our aim was to determine the irreducibility of ϕk(x). In these computations several

curious properties arose, which I would like to investigate why these exist and if they hold true in

general. In particular it would appear that:

1. ϕk(x) is always reducible modulo 11, 17, 23, and 29.

2. ϕk(x) and ϕl(x) while different for k 6= l, often have the same reduction modulo small primes,

if k and l are close. But not always. For instance modulo 11, ϕ1764(x) 6≡ ϕ1772(x), however

ϕ1538(x) ≡ ϕ1544(x) These examples were taken because they both compare weights congruent

to 0 and 8 modulo 12.

3. Sometimes ϕk(x) ≡ x ∗ ϕk−2(x) modulo p, but not most of the time.

5.4 Add level

The obvious, albeit difficult, next step would be to add level. That is, ask when the product

of eigenforms for level N is again an eigenform. This question has been asked by several people,

and some progress has been made toward an answer, all for various specific classes of congruence

subgroups. In particular Ghate [17] investigated this for level Γ1(N), N square free, Emmons [10]

investigated this for Γ0(p) where p is prime, and Johnson [20] investigated this for level Γ1(N). It

would be interesting to see if this can be extended to a more general level. Of course there are

nuances to take care of, such as, for instance the fact that one must modify the definition of an

eigenform to coincide with the properties of Hecke operators in higher level.

5.5 The general question

One could generalize all of this to a single question: what does it take to have closure of

eigenforms under an operator? Consider a graded algebra ⊕Mk wherein multiplication of elements

results in addition of their weights. And suppose there is a set of linear operators on each space,

{Tn,k}n,k. Call an eigenform of weight k an element which is an eigenvector for all {Tn,k}n. What

conditions are necessary to have the property that eigenforms are closed under multiplication? That

is, if f and g are eigenforms, that f · g must be as well.

48



5.6 More computations

There are several things that I would like to continue computationally.

Regarding Tn,k(x) one could check for irreducibility or for full Galois group. Regarding

irreducibility, T2,k(x) has been verified to be irreducible up through weights 4096, although this was

done by actually computing T2,k(x). Hence a computation modulo p should almost trivially push

that further. On the other hand finding full Galois group will also allow Alghren’s result to apply,

and has only been found up through weight 2000.

As for ϕk(x) I think I have my algorithm nearly as efficient as possible (without using

advanced multiplication techniques such as FFT), so to push this father would mean merely using

more computational resources (it is very easily parallelizeable). However, I prefer algorithm design

and don’t see much point in merely using more computational power when such will change in a few

years anyway.

Lastly there is the Rankin-Cohen bracket operator. I did some fairly large searches to find

brackets which were not injective. There are also some peculiarities that occurred regarding when

there are zeros. While this topic is beyond the scope of this thesis, I do plan on continuing to figure

out what is going on with these bracket operators. This will likely include many computations

related to them.
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Möbius transformation, 2
Maass-Shimura Operator, 18
Maeda’s Conjecture, 15
Petersson inner product, 14
Rankin-Cohen bracket operator, 17
Rankin-Selberg Convolution, 14
Action

SL2(Z) on H, 2
Basis of Mk

Diagonal, 6
Cuspidal modular form, 3
Derivative, 17
Diagonal basis, 6
Dimension, 5

Eigenform, 13
Fractional linear transformation, 2
Fundamental domain, 2
Growth rate

Modular form, 3
Level

Full, 1
Modular form, 3
Modular function, 3
Nearly holomorphic modular forms, 18
Self-adjoint

Hecke Operator, 14
Upper half plane, 1
Weight

Holomorphic, 18
Non-holomorphic, 18

Eigenform
Normalized, 13

Modular Form
Zeros, 7

Modular Function, 3

Order of vanishing, 7

Root of unity, 7

Valence Formula, 7

52


	Title Page
	Abstract
	Acknowledgments
	Introduction
	The Upper Half Plane
	Modular Forms
	Zeros of Modular Forms
	L-functions
	Hecke Operators
	Petersson Inner Product
	The Rankin-Selberg Convolution
	Maeda's Conjecture
	Eisenstein Series Conjecture
	Galois Actions
	The Rankin-Cohen Bracket Operator
	The Nearly Holomorphic Setting
	Previous Results

	Results on Nearly Holomorphic Modular Forms
	Introduction
	Nearly Holomorphic Modular Forms
	Main Result

	Divisibility of an Eigenform by another Eigenform
	Introduction and Statement of Main Results
	Proof of Theorem 3.1.3
	Proof of Theorem 3.1.4
	Proof of Theorem 3.1.5
	Relationship to L-values
	Conclusions and Maeda's Conjecture

	Computations
	Computing Examples
	Computing k(x)
	Basic Idea

	Future Directions
	The Rankin-Cohen Bracket Operator
	Nearly Holomorphic Modular Forms
	Properties of k(x)
	Add level
	The general question
	More computations

	Bibliography
	Index

