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Abstract. It has been shown in several settings that the product of two eigenforms is
rarely an eigenform. In this paper we consider the more general question of when the
product of an eigenform with any modular form is again an eigenform. We prove that this
can only occur in very special situations. We then relate the divisibility of eigenforms to
linear independence of vectors of Rankin-Selberg L-values.

1. Introduction and Statement of Main Results

There have been several works regarding the factorization of eigenforms for the full modular
group Γ = SL2(Z). In particular Rankin [15] considered products of Eisenstein series. Inde-
pendently Duke [6] and Ghate [10] show that the product of two eigenforms is an eigenform
in only finitely many cases. More generally Emmons and Lanphier [7] show that the product
of any number of eigenforms is an eigenform only finitely many times. The present paper
will consider a factorization that allows one factor to be any modular form. It is shown in
Sections 2, 3, and 4 that given some technical conditions the only eigenforms that can divide
other eigenforms come from one dimensional spaces. This is a corollary of Theorems 1.3,
1.4, and 1.5.

It is well known that there is a basis of eigenforms for the space Sk of cuspforms of weight k
on SL2(Z). Together Sk and the Eisenstein series Ek generate the full space Mk of modular
forms of weight k. Further, every noncuspidal eigenform is an Eisenstein series. Additionally,
a basis of eigenforms is necessarily an orthogonal basis under the Petersson inner product
[5, p. 163]. For more information on these topics, see any basic text on modular forms, such
as [14] or [5]. We define Eisenstein series as follows.

Definition 1.1. The weight k Eisenstein series is the modular form given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the kth Bernoulli number, σk−1(n) =
∑

d|n d
k−1, and q = e2πiz.

In this paper we investigate an eigenform h divided by an eigenform f with quotient g which
is a modular form. That is,

(1.2) h = fg.
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Without loss of generality we assume that all eigenforms considered are normalized so that
the first nonzero coefficient is one. The dividend h could be either cuspidal or an Eisenstein
series. Likewise the divisor f could be either cuspidal or an Eisenstein series. It is impossible
to divide an Eisenstein series by a cuspidal eigenform and obtain a quotient which is again
a modular form, so our problem naturally breaks into three cases to consider,

Case (1) Both the dividend h and divisor f are cuspidal eigenforms.
Case (2) The dividend h is a cuspidal eigenform, but the divisor f is an Eisenstein series.
Case (3) Both the dividend h and divisor f are Eisenstein series.

Each of these cases leads to a theorem related to the factorization of some polynomials. In
Cases 1 and 2 these polynomials are the characteristic polynomials, Tn,k(x), of the nth Hecke
operator of weight k. In the third case this polynomial is the Eisenstein polynomial ϕk(x),
whose roots are the j-zeroes of the weight k Eisenstein series Ek (See Definition 4.1).

In Case 1, both dividend h and divisor f are cuspidal eigenforms. In this case the quotient
g cannot be cuspidal. The following theorem gives a comparison of the dimension of Swt(h)
and Mwt(g), the spaces which contain the dividend h and quotient g, respectively.

Theorem 1.3. Suppose a cuspidal eigenform f divides another cuspidal eigenform h with
quotient g a modular form. Then either dim(Swt(h)) = dim(Mwt(g)) or for every n ≥ 2,
Tn,wt(h)(x) is reducible over the field Ff (See Definition 2.1 for Ff).

In Case 2, the divisor f is an Eisenstein series, but the dividend h is still a cuspidal modular
form. Hence the quotient g must be cuspidal. In this case our result is as follows.

Theorem 1.4. Suppose an Eisenstein series f divides a cuspidal eigenform h with quotient
g a modular form. Then either dim(Swt(h)) = dim(Swt(g)) or for every n ≥ 2, Tn,wt(h)(x) is
reducible over Q.

In Case 3, the dividend h is an Eisenstein series, and so the quotient g must be noncuspidal.
In this case in place of the Hecke polynomial we are led to consider the Eisenstein polynomial
ϕk(x) of weight k (See Definition 4.1). Our result is as follows.

Theorem 1.5. Suppose an Eisenstein series f divides another Eisenstein series h with quo-
tient g a modular form. Then either dim(Mwt(h)) = dim(Mwt(g)) or the polynomial ϕwt(h)(x)
is reducible over Q.

In each of the above theorems there is either an equality of the dimensions of the appropriate
spaces, or information about the factorization of a certain polynomial, Tn,wt(h)(x) or ϕwt(h)(x).
For small weights it is known that these polynomials do not factor, and so the dividend h
and quotient g must come from spaces of the same dimension. For higher weights it is
conjectured that this is still the case. See Section 6 for details.

2. Proof of Theorem 1.3

Theorem 1.3 tells us that if we write h = fg where h and f are cuspidal eigenforms, then
either Tn,wt(h)(x) is reducible over Ff or dim(Swt(h)) = dim(Mwt(g)).
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We now present the formal definition of Ff .

Definition 2.1. Given a normalized eigenform f , let Ff denote the field generated over Q
by its Fourier coefficients. That is, if f =

∑
n≥0 anq

n then Ff = Q(a0, a1, a2, ...).

Recall that Ff/Q is a finite extension and dim(Ff ) ≤ dim(Swt(f)) [16, ch.3].

The following special subspaces of Sk will play an important role in our proofs.

Definition 2.2. Let F ⊆ C be a field. A subspace S ⊆ Sk is said to be F-rational if it
is stable under the action of Gal(C/F). i.e. σ(S) = S for all σ ∈ Gal(C/F). Here an
automorphism σ acts on modular forms through their Fourier coefficients.

We consider such spaces to obtain information about the Hecke polynomials. The following
crucial lemma gives a condition guaranteeing all of the Hecke polynomials for a certain weight
are reducible.

Lemma 2.3. If S is a proper F-rational subspace of Sk and S contains an eigenform, then
all the Hecke polynomials of weight k are reducible over F.

In all known cases the Hecke polynomials Tn,k(x) are irreducible. Hence the contrapositive
is more practical.

Corollary 2.4. If for some n, Tn,k(x) is irreducible over F, then no proper F-rational sub-
space of Sk contains an eigenform.

We now prove Lemma 2.3.

Proof of Lemma 2.3. Let S ⊂ Sk be a proper F-rational subspace containing an eigenform
h. Then define

R := 〈σ(h)|σ ∈ Gal(C/F)〉C ≤ S

which is also a proper F-rational subspace of Sk. Then Sk = R ⊕ R⊥, both of which are
proper and stable under the action of the Hecke operators because they have eigenform
bases. Denote by Tn,k|R(x) the characteristic polynomial of Tn,k restricted to R. Note that
Tn,k(x) = Tn,k|R(x) · Tn,k|R⊥(x). Since R is F-rational, Tn,k|R(x) ∈ F[x]. Also Tn,k(x) ∈ F[x]
(actually Tn,k(x) ∈ Z[x]). So Tn,k|R⊥(x) ∈ F[x]. Therefore Tn,k(x) is reducible over F for all
n. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose we have the factorization h = fg where f and h are
cuspidal eigenforms. Then by dimension considerations dim(Swt(h)) ≥ dim(Mwt(g)). If
dim(Swt(h)) = dim(Mwt(g)), the proof is complete. So we assume dim(Swt(h)) > dim(Mwt(g)).

Let {g1, ..., gb} be a rational basis of Swt(g). Then the space fMwt(g) =
〈
fEwt(g), fg1, fg2, ..., fgb

〉
is an Ff -rational subspace of Swt(h) of dimension dim(Mwt(g)). Because dim(Swt(h)) >
dim(Mwt(g)), it is a proper Ff -rational subspace of Swt(h). On the other hand, this space
contains an eigenform h = fg. Hence by Lemma 2.3 we know that Tn,wt(h)(x) is reducible
over Ff for all n. �
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From the dimension formula [5] for spaces of modular forms we find that dim(Swt(h)) =
dim(Mwt(g)) occurs only as in the following cases.

Lemma 2.5. Write h = fg where h and f are both cuspidal eigenforms. Then dim(Swt(h)) =
dim(Mwt(g)) in and only in the following cases.

wt(f) = 12, wt(g) ≡ 4, 6, 8, 10, 12, 14 mod (12)

wt(f) = 16, wt(g) ≡ 4, 6, 10, 12 mod (12)

wt(f) = 18, wt(g) ≡ 4, 8, 12 mod (12)

wt(f) = 20, wt(g) ≡ 6, 12 mod (12)

wt(f) = 22, wt(g) ≡ 4, 12 mod (12)

wt(f) = 26, wt(g) ≡ 12 mod (12)

On the other hand if dim(Swt(h)) = dim(Mwt(g)), then Lemma 2.5 implies that wt(f) is one
of 12, 16, 18, 20, 22, or 26. Thus dim(Swt(f)) = 1. In these cases we can use linear algebra to
construct a factorization h = fg. In particular the basis {Ewt(g), g1, ..., gb} of Mwt(g) maps
to the basis {fEwt(g), fg1, ..., fgb} of Swt(h) so that everything, including the eigenforms in
Swt(h), has a factor of f . Also note that if dim(Swt(h)) = 1, then the above reduces into the
cases that are treated in [6] and [10].

Corollary 2.6. If h = fg with h and f cuspidal eigenforms and for some n, Tn,wt(h)(x)
is irreducible over every field F of degree less than dim(Swt(h)), then f comes from a one
dimensional space, i.e. wt(f) = 12, 16, 18, 20, 22, 26.

We note that while part of the hypothesis regarding Tn,k(x) used in the above corollary may
appear strange, it follows from Maeda’s Conjecture [11], see also Section 6.

3. Proof of Theorem 1.4

Theorem 1.4 tells us that if we write h = fg where h is a cuspidal eigenform and f is an
Eisenstein series, then either Tn,wt(h)(x) is reducible over Q or dim(Swt(h)) = dim(Swt(g)).

Proof of Theorem 1.4. Suppose we have a factorization h = fg where h is a cuspidal
eigenform and f is an Eisenstein series. Then by dimension considerations dim(Swt(h)) ≥
dim(Swt(g)). If dim(Swt(h)) = dim(Swt(g)), the proof is complete. So we assume dim(Swt(h)) >
dim(Swt(g)). Let {g1, ..., gb} be a rational basis of Swt(g). Then the space fSwt(g) = 〈fg1, ..., fgb〉
is a rational subspace of Swt(h) of dimension dim(Swt(g)). Because dim(Swt(h)) > dim(Swt(g)),
it is a proper rational subspace of Swt(h). On the other hand, this space contains an eigenform
h = fg. Hence by Lemma 2.3 we know that Tn,wt(h)(x) is reducible over Q for all n. �

From the dimension formula [5] for spaces of modular forms we find that dim(Swt(h)) =
dim(Swt(g)) occurs only in the following cases.
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Lemma 3.1. Write h = fg where h is a cuspidal eigenform and f is an Eisenstein series.
Then dim(Swt(h)) = dim(Swt(g)) in and only in the following cases:

wt(f) = 4, wt(g) ≡ 0, 4, 6, 10 mod (12)

wt(f) = 6, wt(g) ≡ 0, 4, 8 mod (12)

wt(f) = 8, wt(g) ≡ 0, 6 mod (12)

wt(f) = 10, wt(g) ≡ 0, 4 mod (12)

wt(f) = 14, wt(g) ≡ 0 mod (12)

On the other hand if dim(Swt(h)) = dim(Swt(g)), then Lemma 3.1 implies that wt(f) is one
of 4, 6, 8, 10, or 14. Thus dim(Mwt(f)) = 1. In these cases we can use linear algebra to
construct a factorization h = fg. In particular the basis {g1, ..., gb} of Swt(g) maps to the
basis {fg1, ..., fgb} of Swt(h) so that everything, including the eigenforms in Swt(h), has a
factor of f . Also note that if dim(Swt(h)) = 1, then the above reduces to the cases that are
treated in [6] and [10].

Corollary 3.2. If h = fg with h a cuspidal eigenform, f an Eisenstein series and for
some n, Tn,wt(h)(x) is irreducible over Q. Then, f comes from a one dimensional space. i.e.
wt(f) = 4, 6, 8, 10, 14.

Again we note the connection of our hypothesis to Maeda’s Conjecture [11], see also Section
6.

4. Proof of Theorem 1.5

Theorem 1.5 tells us that if we write h = fg where h and f are both Eisenstein series, then
either the Eisenstein polynomial ϕwt(h)(x) of weight k is reducible over Q or dim(Mwt(h)) =
dim(Mwt(g)).

We now define the Eisenstein polynomial ϕk(x) of weight k.

Definition 4.1. Let ϕk =
∏

(x − j(zl)), where the product runs over all the j-zeros of Ek
except for 0 and 1728. (Under the j-mapping, ρ and i correspond to 0 and 1728 respectively).

Note that ϕk(x) is monic with rational coefficients. See [9] or [4] for more information on
this function.

Proof of Theorem 1.5. Suppose h = fg where both h and f are Eisenstein series. Then
ϕwt(f)(x) divides ϕwt(h)(x). Hence either ϕwt(f)(x) is a constant, a constant multiple of
ϕwt(h)(x) or ϕwt(h)(x) is reducible.

If ϕwt(f)(x) is a constant, then f must be one of E4, E6, E8, E10, or E14. Thus by dimension
considerations dim(Mwt(h)) = dim(Mwt(g)).

If ϕwt(f)(x) is a constant multiple of ϕwt(h)(x) then dim(Mwt(f)) = dim(Mwt(h)), so that by
dimension considerations g must be one of E4, E6, E8, E10, or E14. However, then f, g, and h
are all Eisenstein series, which by [6] and [10] can only occur if dim(Mwt(f)) = dim(Mwt(g)) =
dim(Mwt(h)) = 1. �
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From the dimension formula [5] for spaces of modular forms we find that dim(Mwt(h)) =
dim(Mwt(g)) occurs only in the following cases.

Lemma 4.2. Write h = fg where h and f are both Eisenstein series. Then dim(Mwt(h)) =
dim(Mwt(g)) in and only in the following cases:

wt(f) = 4, wt(g) ≡ 0, 4, 6, 10 mod (12)

wt(f) = 6, wt(g) ≡ 0, 4, 8 mod (12)

wt(f) = 8, wt(g) ≡ 0, 6 mod (12)

wt(f) = 10, wt(g) ≡ 0, 4 mod (12)

wt(f) = 14, wt(g) ≡ 0 mod (12)

On the other hand if dim(Mwt(h)) = dim(Mwt(g)), Lemma 4.2 implies that wt(f) is one of 4,
6, 8, 10, or 14. Thus dim(Mwt(f)) = 1. In these cases we can construct a factorization h = fg
as in the previous section. Again note that if dim(Swt(h)) = 1, then the above reduces to the
cases that are treated in [6] and [10].

Corollary 4.3. If h = fg with h and f Eisenstein series and ϕwt(h)(x) is irreducible over
Q, then f comes from a one dimensional space, i.e. wt(f) = 4, 6, 8, 10, 14.

We note that the part of the hypothesis regarding ϕwt(h)(x) used in the above is conjectured
to always hold [4, 9].

5. Relationship to L-values

In this section we investigate the relationship between the divisibility properties discussed in
Section 3 and Rankin Selberg L-values. As in (1.2) we write h = fg to denote the eigenform
f dividing the eigenform h. Here the dividend h is a cuspform, and the divisor f = Er
is an Eisenstein series. Thus the quotient g is cuspidal. Let {h1, ..., hd} and {g1, ..., gb} be
normalized eigenform bases for Swt(h) and Swt(g) respectively.

Write g =
∑

n≥1 anq
n, and h =

∑
n≥1 bnq

n. The Rankin-Selberg convolution of g and h is
defined by

L(g × h, s) =
∑
n≥1

anbn
ns

.

With this notation the Rankin-Selberg method [2] yields

(5.1) 〈Erg, h〉 = (4π)−(s+wt(h)−1)Γ(s+ wt(h)− 1)L(g × h, s+ wt(h)− 1)

We are particularly interested in the Rankin-Selberg L-function value at s = wt(h) − 1,
hence we use the following notation.

L(g, h) := L(g × h,wt(h)− 1).

We will employ Theorem 1.4 to give insight into the question of linear independence of
certain vectors of Rankin-Selberg L-values. Recall that eigenforms are orthogonal under the
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Petersson inner product (〈hj, hi〉 = 0 for j 6= i). Let h1 = h = Erg and express g in terms of
its eigenform bases, g = c1g1 + · · ·+ cdgd. Then for each i 6= 1, we have,

c1〈Erg1, hi〉+ · · ·+ cb〈Ergb, hi〉 = 〈h1, hi〉 = 0.

Setting s = 0 and dividing by (4π)−wt(h)+1Γ(wt(h)− 1), (5.1) yields for each i 6= 1,

(5.2) c1L(g1, hi) + · · ·+ cbL(gb, hi) = 0.

We express the coefficients in 5.2 as a set of vectors,

(5.3)


L(g1, h2)

...
L(g1, hd)

 , ...,
L(gb, h2)

...
L(gb, hd)


Proposition 5.4. Let {h1, ..., hd} and {g1, ..., gb} be normalized eigenform bases for the
spaces Swt(h) and Swt(g) respectively, with wt(h) ≥ wt(g) + 4. If there is an n such that
Tn,wt(h)(x) is irreducible over Q and d > b, then the vectors of L values given in (5.3) are
linearly independent over C. If there is an n such that Tn,wt(h)(x) is irreducible over Q and
d = b there is precisely one dependence relation.

Proposition 5.4 can be restated in terms of the matrix M = M(g × h) whose columns are
the vectors in 5.3.

Proposition 5.4’. Let {h1, ..., hd} and {g1, ..., gb} be normalized eigenform bases for the
spaces Swt(h) and Swt(g) respectively, with wt(h) ≥ wt(g) + 4. If there is an n such that
Tn,wt(h)(x) is irreducible over Q, then the matrix M(g × h) is of full rank.

Proof. Suppose Tn,wt(h)(x) is irreducible for some n. There are two cases to consider.

Case 1: d > b. Suppose there is a solution [c1, ..., cb]
T to the matrix equation M−→x =

−→
0 .

We must show that [c1, ..., cb]
T =
−→
0 . We have, for each i = 2, 3, ..., d,

c1L(g1, hi) + · · ·+ cbL(gb, hi) = 0.

By using the Rankin-Selberg method and denotingG := c1g1+· · · cbgb, we have 〈G·Er, hi〉 = 0
for i = 2, ..., d. Hence G ·Er is orthogonal to each of h2, h3, ..., hd and so G ·Er = ch1 for some
c ∈ C. Theorem 1.4 implies g = 0 and c = 0, which further implies that c1 = · · · = cb = 0.

Case 2: d = b. Because M is underdetermined there clearly are nonzero solutions to the

matrix equation M−→x =
−→
0 . We must show that M has nullity 1. Suppose there are two

nonzero solutions [c1, ..., cb]
T and [c′1, ..., c

′
b]
T to the matrix equation M−→x =

−→
0 . Similar to

above we construct G := c1g1 + · · · cbgb and G′ := c′1g1 + · · · c′bgb which satisfy, respectively,
ErG = ch1, ErG

′ = c′h1 for some c, c′ ∈ C. Thus G and G′ are scalar multiples of each
other. Thus any two solutions are dependent.

�
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6. Conclusions and Maeda’s Conjecture

The main results of this paper state that if there are eigenforms h and f and a modular
form g such that h = fg then either the modular spaces containing g and h must have the
same dimension or all of the Hecke polynomials for Swt(h) or the Eisenstein polynomial of
weight wt(h) are reducible, depending on whether h is cuspidal or not. In this section we
discuss the unlikeliness that these polynomials are reducible and we discuss the cases that
the modular spaces containing g and h do in fact have the same dimension. First, we state
the following partial converse of Theorems 1.3, 1.4, and 1.5.

Proposition 6.1. Let h and f be eigenforms.

Case (1) Both h and f are cuspidal eigenforms. If dim(Swt(h)) = dim(Mwt(h)−wt(f)), then
there is a modular form g such that fg = h.

Case (2) Only h is a cuspidal eigenform, f is an Eisenstein series. If dim(Swt(h)) =
dim(Swt(h)−wt(f)), then there is a cuspidal modular form g such that fg = h.

Case (3) Both h and f are Eisenstein series. If dim(Mwt(h)) = dim(Mwt(h)−wt(f)), then
there is a modular form g such that fg = h.

In each of Cases 1, 2, and 3 there are infinitely many examples of eigenforms f and h such
that f divides h as in equation (1.2).

Proof. Here, we only consider one specific instance of Case 2. The other instances and cases
follow similarly. From Lemma 3.1 we see that there are twelve infinite classes such as wt(f) =
4, wt(h) ≡ 4 modulo 12. In each of these instances we can divide any cuspidal eigenform h of
weight wt(h) by E4. This is because dim(Swt(g)) = dim(Swt(h)) and so E4Swt(g) = Swt(h). �

Example 6.2. We now present an explicit example of a factorization in which g is not an
eigenform. Let {h1, h2} be an eigenform basis for S28. Note that {E16∆, E4∆

2} is another,
more explicit, basis. Hence we can write h1 and h2 in terms of these functions, one of which
is

E16∆ +

(
−14903892

3617
− 108

√
18209

)
E4∆

2.

Factoring E4 out of the above form gives the following equation expressed in terms of the
basis {E12∆,∆

2} of S24,

E4

(
E12∆ +

(
−3075516

691
− 108

√
18209

)
∆2

)
= E16∆+

(
−14903892

3617
− 108

√
18209

)
E4∆

2.

Note in particular that the quotient, E12∆+
(
−3075516

691
− 108

√
18209

)
∆2, is not an eigenform

and recall that E4 · E12 6= E16.

Call a factorization not counted by Proposition 6.1 exceptional; such a factorization would
involve a quotient g and dividend h that come from modular spaces of different dimensions.
In light of the following conjectures, we believe there are no exceptional factorizations. If
this is true then Proposition 6.1 is a full converse of Theorems 1.3, 1.4, and 1.5.
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Conjecture 6.3 (Maeda, [11]). The Hecke algebra over Q of Sk(SL2(Z)) is simple (that
is, a single number field) whose Galois closure over Q has Galois group isomorphic to the
symmetric group Sn (with n = dimSk(SL2(Z))).

Maeda’s conjecture significantly restricts the factorization of the Hecke polynomial Tn,k(x).
Proposition 6.4 below tells us that if Tn,k(x) has full Galois group then Tn,k(x) is irreducible
over all fields F with [F : Q] < dim(Sk). This is significant because Ff used in Section 2
satisfies this condition.

This conjecture appeared in [11], and in the same paper was verified for weights less than
469. Buzzard [3] showed that T2,k(x) is irreducible up to weight 2000. The fact that Tp,k(x)
has full Galois group it was verified for p ≤ 2000 up to weight 2000 by Farmer and James [8].
Kleinerman [13] showed that T2,k(x) is irreducible up to weight 3000. Alhgren [1] showed for
all weights k that if for some n, Tn,k(x) is irreducible and has full Galois group, then Tp,k(x)
does as well for all p ≤ 4, 000, 000. Finally from correspondence between Stein and Ghitza
it is known that T2,k(x) is irreducible up to weight 4096. In particular for weights less than
2000 Case 1 in Proposition 6.1 is a full converse of Theorem 1.3, and for weights less than
4096 Case 2 in Proposition 6.1 is a full converse of Theorem 1.4.

Proposition 6.4. Let P (x) ∈ Q[x] be a degree d polynomial. Let KP be its splitting field.
Assume [KP : Q] = d!. If P factors over K, then [K : Q] ≥ d.

Proof. Suppose P is reducible over K and [K : Q] < d. Write P = QR, where Q,R ∈
K[x] are polynomials of degrees d1, d2 and have splitting fields KQ, KR respectively. Then
d1 + d2 = d and so

d1!d2! ≥ [KQ : K] · [KR : K] ≥ [KQKR : K] ≥ [KP : K] > (d− 1)!,

which occurs if and only if d1 = 0 or d2 = 0. Hence one of Q or R is a constant, so that P
is irreducible over K. �

Concerning the Eisenstein polynomials, ϕk(x), we have the following.

Conjecture 6.5 (Cornelissen [4] and Gekeler [9]). The Eisenstein polynomials ϕk(x) have
full Galois group Sn (with n = dim(Sk)), in particular they are irreducible over Q.

This question was first raised by Cornelissen [4] and Gekeler [9], who found that ϕk(x) has
full Galois group for all weights k ≤ 172. We have verified the irreducibility of ϕk(x) for
weights up to 2500.

We computed ϕk(x) modulo small primes p for weights through 2500 to verify that it is
irreducible. An equation presented in [12] and [4] gives the equation

Ek
Ea

4E
b
6∆

c
= ϕk(j(τ)),

where 4a + 6b + 12c = r, with 0 ≤ a ≤ 2, 0 ≤ b ≤ 1. For each weight computed there is
a small prime p such that ϕk(x) is indeed irreducible modulo p, and so ϕk(x) is irreducible
over Q. There is no reason other than runtime that the highest weight computed was 2500.
In these weights Case 3 of Proposition 6.1 is a full converse of Theorem 1.5.
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As a final remark we note that if conjectures 6.4 and 6.5 are true, then Proposition 6.1 is a
full converse to all the main theorems. This means that an eigenform is divisible by another
eigenform precisely in the cases listed in Lemmas 2.5, 3.1, and 4.2.
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