NAME \qquad
Su2014/CHEM1451/Exam 4/Dooley
August 1, 2014
125 Points Total
Multiple Choice: (4 Points Each) Place the letter corresponding to the correct answer to the left of each problem number.
\qquad 1. When titrating a weak acid with NaOH , the
a. $\quad \mathrm{pH}$ will be less than 7 at the equivalence point.
b. $\quad \mathrm{pH}$ will be equal to 7 at the equivalence point.
c. $\quad \mathrm{pH}$ will be greater than 7 at the equivalence point.
d. titration will require more moles of base than acid to reach the equivalence point.
e. titration will require more moles of acid than base to reach the equivalence point.
\qquad 2. In a weak acid titration with a strong base, the equivalence point is found to occur at 60 mL of added base. What did the pH equal after only adding 30 mL of base?
a. The pK_{a} of the weak acid
b. \quad The $p K_{b}$ of the weak acid
c. The pH varies depending on the base you are using
d. $\quad \mathrm{pH}=7$
e. $\quad \mathrm{pH}=3.5$
3. A 60 mL sample of 0.400 M hypochlorous acid $\left(\mathrm{K}_{\mathrm{a}}=2.9 \times 10^{-8}\right)$ is titrated with 0.100 M NaOH . What is the pH of the sample before any base is added?
a. $\quad 1.95$
b. 3.97
c. 10.03
d. 7.00
e. None of the above
4. When you compare the titration curves of several weak acids of the same molarity with a strong base, which of the following indicates that you are looking at the curve for the weakest of the acids?
a. The pH jump at the equivalence point is the largest
b. The initial pH is the lowest, and it takes more base to neutralize.
c. The pH in the buffer region is the highest and the pH at the equivalence point is the highest.
d. The equivalence point occurs with less base added.
e. You can't tell the strength of the acid from its titration curve.
\qquad 5. Which of the following compounds will be more soluble in acidic solution than in pure water?
a. $\quad \mathrm{PbCl}_{2}$
b. $\quad \mathrm{FeCO}_{3}$
c. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
d. $\quad \mathrm{Cu}$
e. None of the above will be more soluble in acidic solution.
\qquad 6. Determine the molar solubility of PbSO_{4} in pure water. $\mathrm{K}_{\mathrm{sp}}\left(\mathrm{PbSO}_{4}\right)=1.82 \times 10^{-8}$.
a. $\quad 1.82 \times 10^{-8} \mathrm{M}$
b. $\quad 1.35 \times 10^{-4} \mathrm{M}$
c. $\quad 9.1 \times 10^{-9} \mathrm{M}$
d. $\quad 3.31 \times 10^{-16} \mathrm{M}$
e. $\quad 4.48 \times 10^{-4} \mathrm{M}$
\qquad 7. Write the reaction associated with the solubility product of $\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}$.
a. $\mathrm{Pb}^{4+}(\mathrm{aq})+2 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})$
b. $\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{4+}(\mathrm{aq})+2 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
c. $\mathrm{Pb}^{4+}(\mathrm{aq})+2 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{aq})$
d. $\mathrm{Pb}(\mathrm{s})+\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})$
e. None of the above
8. Write the expression for the solubility product for $\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}$.
a. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}\right]$
b. $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{4+}\right]\left[\mathrm{CO}_{3}^{2-}\right]^{2}$
c. $K_{s p}=\frac{\left[\mathrm{Pb}^{4+}\right]\left[\mathrm{CO}_{3}^{2-}\right]^{2}}{\left[\mathrm{~Pb}\left(\mathrm{CO}_{3}\right)_{2}\right]}$
d. $K_{s p}=\frac{\left[\mathrm{Pb}_{\mathrm{S}}\left(\mathrm{CO}_{3}\right)_{2}\right]}{\left[\mathrm{Pb}^{4}+\right]\left[\mathrm{CO}_{3}^{--}\right]^{2}}$
e. None of the above
9. If an ionic compound is dissolved in an unsaturated solution, how does Q compare with Ksp.
a. $\quad \mathrm{Q}<\mathrm{Ksp}$
b. $\quad Q>K s p$
c. $\quad Q=K s p$
d. $\quad Q$ is totally unrelated to $K s p$, so there is no way to tell
e. $\quad Q$ is related to K, but doesn't tell you if a solution is saturated
10. Which of the following processes have a $\Delta S>0$?
a. $\quad \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{s})$
b. $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
c. $\quad \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
d. $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaHCO}_{3}(\mathrm{~s})$
e. All of the above processes have a $\Delta S>0$.
11. Which of the following statements is TRUE?
a. Entropy is not a state function.
b. Endothermic processes decrease the entropy of the surroundings, at constant T and P.
c. Endothermic processes are never spontaneous.
d. Exothermic processes are always spontaneous.
e. None of the above are true.
12. Consider a reaction that has a negative $\Delta \mathrm{H}$ and a positive $\Delta \mathrm{S}$. Which of the following statements is TRUE?
a. This reaction will be spontaneous only at high temperatures.
b. This reaction will be spontaneous at all temperatures.
c. This reaction will be nonspontaneous at all temperatures.
d. This reaction will be nonspontaneous only at high temperatures.
e. It is not possible to determine without more information.
13. Consider a reaction that has a positive $\Delta \mathrm{H}$ and a positive $\Delta \mathrm{S}$. Which of the following statements is TRUE?
a. This reaction will be spontaneous only at high temperatures.
b. This reaction will be spontaneous at all temperatures.
c. This reaction will be nonspontaneous at all temperatures.
d. This reaction will be nonspontaneous only at high temperatures.
e. It is not possible to determine without more information.
14. Consider the following reaction at constant P. Use the information here to determine the value of $\Delta \mathrm{S}_{\text {surr }}$ at 298 K . Predict whether or not this reaction will be spontaneous at this temperature based on what you know about the $\Delta \mathrm{S}_{\text {sys }}$.

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+66.4 \mathrm{~kJ}
$$

a. $\quad \Delta$ Ssurr $=+223 \mathrm{~J} / \mathrm{K}$, reaction is spontaneous
b. $\quad \Delta$ Ssurr $=-223 \mathrm{~J} / \mathrm{K}$, reaction is not spontaneous
c. $\quad \Delta$ Ssurr $=-66.4 \mathrm{~J} / \mathrm{K}$, reaction is spontaneous
d. $\quad \Delta$ Ssurr $=+66.4 \mathrm{~kJ} / \mathrm{K}$, reaction is not spontaneous
e. Δ Ssurr $=-66.4 \mathrm{~J} / \mathrm{K}$, it is not possible to predict the spontaneity of this reaction without more information
15. What is the sign for $\Delta \mathrm{G}$ and $\Delta \mathrm{S}_{\text {univ }}$ for a spontaneous process?
a. Both are positive
b. Both are negative
c. $\quad \Delta \mathrm{G}$ is positive, and you must calculate $\Delta \mathrm{S}_{\text {univ }}$ to determine its sign
d. $\quad \Delta \mathrm{G}$ is positive and $\Delta \mathrm{S}_{\text {univ }}$ is negative
e. $\Delta \mathrm{G}$ is negative and $\Delta \mathrm{S}_{\text {univ }}$ is positive
16. For the following example, identify the following.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

a. a negative ΔH and a negative $\Delta \mathrm{S}$
b. a positive ΔH and a negative ΔS
c. a negative ΔH and a positive ΔS
d. a positive $\Delta \mathrm{H}$ and a positive $\Delta \mathrm{S}$
e. It is not possible to determine without more information.
17. Choose the reaction that illustrates $\Delta \mathrm{H}^{\circ} \mathrm{f}$ for $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ which is a solid in its standard state.
a. $\mathrm{Ca}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
b. $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{NO}^{3-}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
c. $\mathrm{Ca}(\mathrm{s})+2 \mathrm{~N}(\mathrm{~g})+6 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
d. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{NO}^{3-}(\mathrm{aq})$
e. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$
18. Calculate $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction. The S° for each species is shown below the reaction.

	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
$\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})$	$200.9 \quad 130.7229 .2$

a. $+303.3 \mathrm{~J} / \mathrm{K}$
b. $+560.8 \mathrm{~J} / \mathrm{K}$
c. $-102.4 \mathrm{~J} / \mathrm{K}$
d. $-233.1 \mathrm{~J} / \mathrm{K}$
e. $229.2 \mathrm{~J} / \mathrm{K}$
19. Calculate $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction at 449.0 K .

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta \mathrm{H}^{\circ}=-94.9 \mathrm{~kJ} ; \Delta \mathrm{S}^{\circ}=-224.2 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

a. +5.8 kJ
b. +12.9 kJ
c. -101 kJ
d. +2.4 kJ
e. -4.2 kJ
20. Calculate $\Delta \mathrm{G}_{\mathrm{rxn}}$ at 298 K under the conditions shown below for the following reaction.
$2 \mathrm{Hg}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HgO}(\mathrm{s})$

$$
\Delta \mathrm{G}^{\circ}=-180.8 \mathrm{~kJ}
$$

$\mathrm{P}(\mathrm{Hg})=0.025 \mathrm{~atm}, \mathrm{P}\left(\mathrm{O}_{2}\right)=0.037 \mathrm{~atm}$
a. +207 kJ
b. -154.4 kJ
c. -26.5 kJ
d. -164 kJ
e. +60.7 kJ

Problems: To receive credit on the following problems, be sure to Show all necessary calculations as well as written reactions.

1. (15 Pts) A 100.0 mL sample of $0.10 \mathrm{M} \mathrm{NH}_{3}$ is titrated with $0.15 \mathrm{M} \mathrm{HNO}_{3}$. Determine the pH of the solution after the addition of 80.0 mL of HNO_{3}.
(The K_{b} of NH_{3} is 1.8×10^{-5}.)
2. (15 Points) A 50.0 mL sample of 0.200 M HCN is titrated with 0.10 M NaOH . Determine the pH of the solution after the addition of 30.0 mL of NaOH .
(The K_{a} of HCN is 4.9×10^{-10})
3. (10 Points) Above what temperature does the following reaction become nonspontaneous?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}=-1036 \mathrm{~kJ} ; \Delta \mathrm{S}=-153.2 \mathrm{~J} / \mathrm{K}
$$

4. (12 Points) Use Hess's law to calculate $\Delta \mathrm{G}^{\circ}{ }^{\mathrm{rxn}}$ using the following information.
$\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=$?

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=+394.4 \mathrm{~kJ} \\
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=-257.2 \mathrm{~kJ}
\end{array}
$$

5. (8 Points) Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K .

$$
\begin{array}{ccccc}
& 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g}) \rightarrow & 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{K}=? \\
\Delta \mathrm{G}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol}) & -110.9 \quad 87.6 & 51.3 \quad-237.1
\end{array}
$$

