NAME_____

Su2014/CHEM1451/Exam 4/Dooley

August 1, 2014

125 Points Total

Multiple Choice: (4 Points Each) Place the letter corresponding to the correct answer to the left of each problem number.

- _____1. When titrating a weak acid with NaOH, the
 - a. pH will be less than 7 at the equivalence point.
 - b. pH will be equal to 7 at the equivalence point.
 - c. pH will be greater than 7 at the equivalence point.
 - d. titration will require more moles of base than acid to reach the equivalence point.
 - e. titration will require more moles of acid than base to reach the equivalence point.

2. In a weak acid titration with a strong base, the equivalence point is found to occur at 60 mL of added base. What did the pH equal after only adding 30 mL of base?

- a. The pK_a of the weak acid
- b. The pK_b of the weak acid
- c. The pH varies depending on the base you are using
- d. pH = 7
- e. pH = 3.5
- 3. A 60 mL sample of 0.400M hypochlorous acid ($K_a = 2.9 \times 10^{-8}$) is titrated with 0.100M NaOH. What is the pH of the sample before any base is added?
 - a. 1.95
 - b. 3.97
 - c. 10.03
 - d. 7.00
 - e. None of the above
- 4. When you compare the titration curves of several weak acids of the same molarity with a strong base, which of the following indicates that you are looking at the curve for the weakest of the acids?
 - a. The pH jump at the equivalence point is the largest
 - b. The initial pH is the lowest, and it takes more base to neutralize.
 - c. The pH in the buffer region is the highest and the pH at the equivalence point is the highest.
 - d. The equivalence point occurs with less base added.
 - e. You can't tell the strength of the acid from its titration curve.

- Which of the following compounds will be more soluble in acidic solution than in pure water? 5.
 - PbCl₂ a.
 - FeCO₃ b.
 - $Ca(NO_3)_2$ c.
 - d. Cul
 - None of the above will be more soluble in acidic solution. e.

6. Determine the molar solubility of PbSO₄ in pure water. K_{Sp} (PbSO₄) = 1.82 × 10⁻⁸.

- 1.82×10^{-8} M a.
- 1.35×10^{-4} M b.
- 9.1×10^{-9} M c.
- 3.31×10^{-16} M d.
- 4.48×10^{-4} M e.
- Write the reaction associated with the solubility product of $Pb(CO_3)_2$. 7.
 - a. $Pb^{4+}(aq) + 2CO_3^{2-}(aq) \rightleftharpoons Pb(CO_3)_2(s)$
 - b. $Pb(CO_3)_2(s) \rightleftharpoons Pb^{4+}(aq) + 2CO_3^{2-}(aq)$
 - c. $Pb^{4+}(aq) + 2CO_3^{2-}(aq) \rightleftharpoons Pb(CO_3)_2(aq)$
 - d. Pb (s) + C (s) + $O_2(g) \rightleftharpoons Pb(CO_3)_2$ (s)
 - e. None of the above
 - 8. Write the expression for the solubility product for $Pb(CO_3)_2$.
 - a. $K_{sp}=[Pb(CO_3)_2]$
 - b. $K_{sp}=[Pb^{4+}][CO_3^{2-}]^2$
 - c. $K_{sp} = \frac{[Pb^{4+}][CO_3^{2-}]^2}{[Pb(CO_3)_2]}$ d. $K_{sp} = \frac{[Pb(CO_3)_2]}{[Pb^{4+}][CO_3^{2-}]^2}$

 - e. None of the above
- 9. If an ionic compound is dissolved in an unsaturated solution, how does Q compare with Ksp.
 - a. Q < Ksp
 - b. Q > Ksp
 - c. Q = Ksp
 - d. Q is totally unrelated to Ksp, so there is no way to tell
 - Q is related to K, but doesn't tell you if a solution is saturated e.
- 10. Which of the following processes have a $\Delta S > 0$?
 - $CH_3OH(I) \rightarrow CH_3OH(s)$ a.
 - b. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$
 - $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3 H_2(g)$ c.
 - d. $Na_2CO_3(s) + H_2O(g) + CO_2(g) \rightarrow 2 NaHCO_3(s)$
 - All of the above processes have a $\Delta S > 0$. e.

- ____11. Which of the following statements is TRUE?
 - a. Entropy is not a state function.
 - b. Endothermic processes decrease the entropy of the surroundings, at constant T and P.
 - c. Endothermic processes are never spontaneous.
 - d. Exothermic processes are always spontaneous.
 - e. None of the above are true.
- ____12. Consider a reaction that has a negative ΔH and a positive ΔS . Which of the following statements is TRUE?
 - a. This reaction will be spontaneous only at high temperatures.
 - b. This reaction will be spontaneous at all temperatures.
 - c. This reaction will be nonspontaneous at all temperatures.
 - d. This reaction will be nonspontaneous only at high temperatures.
 - e. It is not possible to determine without more information.
- 13. Consider a reaction that has a positive ΔH and a positive ΔS. Which of the following statements is TRUE?
 - a. This reaction will be spontaneous only at high temperatures.
 - b. This reaction will be spontaneous at all temperatures.
 - c. This reaction will be nonspontaneous at all temperatures.
 - d. This reaction will be nonspontaneous only at high temperatures.
 - e. It is not possible to determine without more information.
- _____14. Consider the following reaction at constant P. Use the information here to determine the value of ΔS_{surr} at 298 K. Predict whether or not this reaction will be spontaneous at this temperature based on what you know about the ΔS_{sys} .

 $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$ $\Delta H = +66.4 kJ$

- a. Δ Ssurr = +223 J/K, reaction is spontaneous
- b. Δ Ssurr = -223 J/K, reaction is not spontaneous
- c. Δ Ssurr = -66.4 J/K, reaction is spontaneous
- d. Δ Ssurr = +66.4 kJ/K, reaction is not spontaneous
- e. Δ Ssurr = -66.4 J/K, it is not possible to predict the spontaneity of this reaction without more information
- 15. What is the sign for ΔG and ΔS_{univ} for a spontaneous process?
 - a. Both are positive
 - b. Both are negative
 - c. ΔG is positive, and you must calculate ΔS_{univ} to determine its sign
 - d. ΔG is positive and ΔS_{univ} is negative
 - e. ΔG is negative and ΔS_{univ} is positive

_16. For the following example, identify the following.

 $H_2O(I) \rightarrow H_2O(s)$

- a. a negative ΔH and a negative ΔS
- b. a positive ΔH and a negative ΔS
- c. a negative ΔH and a positive ΔS
- d. a positive ΔH and a positive ΔS
- e. It is not possible to determine without more information.
- <u>17.</u> Choose the reaction that illustrates ΔH°_{f} for Ca(NO₃)₂ which is a solid in its standard state.
 - a. $Ca(s) + N_2(g) + 3O_2(g) \rightarrow Ca(NO_3)_2(s)$
 - b. $Ca^{2+}(aq) + 2 NO^{3-}(aq) \rightarrow Ca(NO_3)_2(aq)$
 - c. $Ca(s) + 2 N(g) + 6 O(g) \rightarrow Ca(NO_3)_2(s)$
 - d. $Ca(NO_3)_2(aq) \rightarrow Ca^{2+}(aq) + 2 NO^{3-}(aq)$
 - e. $Ca(NO_3)_2(s) \rightarrow Ca(s) + N_2(g) + 3O_2(g)$
- 18. Calculate ΔS°_{rxn} for the following reaction. The S° for each species is shown below the reaction.

		$C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$		
S°(J/mol [.] K)		200.9	130.7 229.2	
a. b. c. d. e.	+303.3 J/K +560.8 J/K -102.4 J/K -233.1 J/K 229.2 J/K			

19. Calculate ΔG°_{rxn} for the following reaction at 449.0 K.

 $CH_2O(g) + 2 H_2(g) \rightarrow CH_4(g) + H_2O(g)$ $\Delta H^\circ = -94.9 \text{ kJ}; \ \Delta S^\circ = -224.2 \text{ J/K}$

a. +5.8 kJ
b. +12.9 kJ
c. -101 kJ
d. +2.4 kJ
e. -4.2 kJ

 $_20.$ Calculate ΔG_{rxn} at 298 K under the conditions shown below for the following reaction.

2 Hg(g) + O₂(g) → 2 HgO(s) $\Delta G^{\circ} = -180.8 \text{ kJ}$ P(Hg) = 0.025 atm, P(O₂) = 0.037 atm a. +207 kJ b. -154.4 kJ c. -26.5 kJ d. -164 kJ e. +60.7 kJ

Problems: To receive credit on the following problems, be sure to Show all necessary calculations as well as written reactions.

1. (15 Pts) A 100.0 mL sample of 0.10 M NH₃ is titrated with 0.15 M HNO₃. Determine the pH of the solution after the addition of 80.0 mL of HNO₃. (The K_b of NH₃ is 1.8×10^{-5} .)

2. (15 Points) A 50.0 mL sample of 0.200 M HCN is titrated with 0.10M NaOH. Determine the pH of the solution after the addition of 30.0 mL of NaOH. (The K_a of HCN is 4.9 x 10⁻¹⁰)

3. (10 Points) Above what temperature does the following reaction become nonspontaneous?

 $2 \text{ H}_2\text{S}(g) + 3 \text{ O}_2(g) \rightarrow 2 \text{ SO}_2(g) + 2 \text{ H}_2\text{O}(g)$

 $\Delta H = -1036 \text{ kJ}; \Delta S = -153.2 \text{ J/K}$

4. (12 Points) Use Hess's law to calculate ΔG°_{rxn} using the following information. $CO(g) \rightarrow C(s) + 1/2 O_2(g) \qquad \Delta G^{\circ}_{rxn} = ?$

 $CO_2(g) \rightarrow C(s) + O_2(g)$ ΔG°_{rxn} = +394.4 kJ $CO(g) + 1/2 O_2(g) \rightarrow CO_2(g)$ ΔG°_{rxn} = -257.2 kJ

5. (8 Points) Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K.

 $\label{eq:2} \begin{array}{ll} 2\;\text{HNO}_3(aq) + \text{NO}(g) \rightarrow 3\;\text{NO}_2(g) + \text{H}_2\text{O}(l) & \text{K} = ?\\ \Delta\text{G}^\circ\text{f}~(kJ/mol) & -110.9 & 87.6 & 51.3 & -237.1 \end{array}$