

Multiple Choice: (3 Points each) Place the letter associated with the correct answer in the blank to the left of each number.

_____1. Given the following balanced equation, determine the overall rate of reaction.

 $2 \text{ SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ SO}_3(g)$

- a) Rate = $-\frac{1}{2} \frac{\Delta[SO_3]}{Dt}$ b) Rate = $1 \frac{\Delta[SO_3]}{\Delta[SO_3]}$
- b) Rate = $+\frac{1}{2}\frac{\Delta[SO_3]}{\Delta t}$
- c) Rate = $-\frac{\Delta[SO_3]}{Dt}$ $2\Delta[SO_2]$
- d) Rate = $+\frac{2 \Delta[SO_3]}{\Delta t}$
- e) It is not possible to determine without more information.

_____2. What is the overall order of the following reaction, given the rate law?

 $2NO(g) + H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ Rate = k[NO]²[H₂]

- a) 1st order
- b) 2nd order
- c) 3rd order
- d) 4th order
- e) 0th order

_____3. If the concentration at a certain time of a reactant is 6.25% of its initial value, how many half-lives has it gone through?

- a) 7
- b) 6
- c) 3
- d) 4
- e) 5

4. The first-order decomposition of N₂O₅ at 328 K has a rate constant of 1.70×10^{-1}

 3 s⁻¹. If the initial concentration of N₂O₅ is 2.88 M, what is the concentration of N₂O₅ after 12.5 minutes?

- a) 0.124 M
- b) 0.805 M
- c) 2.82 M
- d) 0.355 M
- e) 0.174 M

____5. Which rate law for an elementary reaction is termolecular?

- a) rate = $k[A][B]^2$
- b) rate = k [A][B]
- c) rate = k [A]
- d) rate = k [A][B][C][D]
- e) rate = $k [A]^2$
 - _____6. If the following is an accepted mechanism, predict the rate law for the overall reaction.

 $2NO_2 + Cl_2 \rightarrow 2NO_2Cl$ (overall reaction)

 $\frac{\text{Mechanism}}{\text{NO}_2 + \text{Cl}_2} \rightarrow \text{NO}_2\text{Cl} + \text{Cl} \qquad \text{slow}$ $\text{NO}_2 + \text{Cl} \rightarrow \text{NO}_2\text{Cl} \qquad \text{fast}$

- a) Rate = $k[NO_2][Cl_2]$
- b) Rate = $k[NO_2]^2[Cl_2]$
- c) Rate = $k[NO_2][Cl]$
- d) Rate = $k[NO_2Cl][Cl]$
- e) The rate law must be determined experimentally

_____7. In aqueous solution, hypobromite ion, BrO-, reacts to produce bromate ion, BrO3and bromide ion, Br-, according to the following chemical equation.

 $3 \operatorname{BrO}(aq) \rightarrow \operatorname{BrO}(aq) + 2 \operatorname{Br}(aq)$

A plot of 1/[BrO-] vs. time is linear and the slope is equal to 0.056 M-1s-1. If the initial concentration of BrO- is 0.80 M, how long will it take one-half of the BrO- ion to react?

- a) 4.5×10^{-2} s
- b) 7.1 s
- c) 12 s
- d) 22 s
- e) 30 s

- _8. Which of the following statements is FALSE?
- a) When K >> 1, the forward reaction is favored and essentially goes to completion.
- b) When K << 1, the reverse reaction is favored and the forward reaction does not proceed to a great extent.
- c) When $K \approx 1$, neither the forward or reverse reaction is strongly favored, and about the same amount of reactants and products exist at equilibrium.
- d) K >> 1 implies that the reaction is very fast at producing products.
- e) None of the above

____9. The equilibrium constant is given for two of the reactions below. Determine the value of the missing equilibrium constant.

	$A(g) + 2B(g) \leftrightarrow AB_2(g)$	Kc = 59
	$AB_2(g) + B(g) \leftrightarrow AB_3(g)$	K _c = ?
	$A(g) + 3B(g) \leftrightarrow AB_3(g)$	$K_{c} = 478$
a)	3.5×10^{-5}	
b)	2.8×10^4	
c)	8.1	
d)	0.12	
e)	89	

_____10. In which of the following reactions will $K_c = K_p$?

- a) $H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$
- b) $CH_4(g) + H_2O(g) \leftrightarrow CO(g) + 3 H_2(g)$
- c) $N_2O_4(g) \leftrightarrow 2NO_2(g)$
- d) $CO(g) + 2 H_2(g) \leftrightarrow CH_3OH(g)$
- e) $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$

_____11. The reaction below has a K_p value of 41. What is the value of K_c for this reaction at 400 K?

 $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$

- a) 2.4×10^{-2} b) 4.4×10^{4} c) 41d) 2.3×10^{-5}
- e) 1.9×104

_12. Express the equilibrium constant for the following reaction.

 $2 \operatorname{Na}(s) + 2 \operatorname{H}_2O(l) \leftrightarrow 2 \operatorname{NaOH}(aq) + \operatorname{H}_2(g)$

a)
$$K = \frac{[NaOH]^{2}[H_{2}]}{[Na]^{2}[H_{2}O]^{2}}$$

b) $K = [H_{2}][NaOH]^{-2}$
c) $K = \frac{[Na]^{2}[H_{2}O]^{2}}{[NaOH]^{2}[H_{2}]}$
d) $K = [H_{2}][NaOH]^{2}$

e)
$$K = \frac{[NaOH]^{1/2}[H_2]}{[Na]^{1/2}[H_2O]^{1/2}}$$

_____13. Consider the following reaction and its equilibrium constant:

$$SO_2(g) + NO_2(g) \leftrightarrow SO_3(g) + NO(g)$$
 $K_c = 0.33$

A reaction mixture contains 0.39 M SO₂, 0.14 M NO₂, 0.11 M SO₃ and 0.14 M NO. Which of the following statements is TRUE concerning this system?

- a) The reaction will shift in the direction of reactants.
- b) The equilibrium constant will decrease.
- c) The reaction will shift in the direction of products.
- d) The reaction quotient will decrease.
- e) The system is at equilibrium.

_____14. The following reaction is exothermic. Which change will increase the concentration of SO_2 ?

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \leftrightarrow 2 \operatorname{SO}_3(g)$$

- a) raising the temperature
- b) adding SO3
- c) removing O₂
- d) all of the above
- e) none of the above

_____15. Consider the following reaction at equilibrium. What effect will increasing the volume of the reaction mixture have on the system?

 $2 \text{ H}_2\text{S}(g) + 3 \text{ O}_2(g) \rightleftharpoons 2 \text{ H}_2\text{O}(g) + 2 \text{ SO}_2(g)$

- a) The reaction will shift to the right in the direction of products.
- b) No effect will be observed.
- c) The reaction will shift to the left in the direction of reactants.
- d) The equilibrium constant will decrease.
- e) The equilibrium constant will increase.

_____16. For the above reaction, what effect will doubling the pressure by adding N_2 to of the reaction mixture have on the system?

 $2 \text{ H}_2\text{S}(g) + 3 \text{ O}_2(g) \rightleftharpoons 2 \text{ H}_2\text{O}(g) + 2 \text{ SO}_2(g)$

- a) The reaction will shift to the right in the direction of products.
- b) No effect will be observed.
- c) The reaction will shift to the left in the direction of reactants.
- d) The equilibrium constant will decrease.
- e) The equilibrium constant will increase.

Problems: Show your work for credit! For problems not requiring mathematical work, provide clear reasoning.

1. (10 Points) A reaction is found to have an activation energy of 108 kJ/mol. If the rate constant for this reaction is 4.60×10^{-6} s⁻¹ at 275 K, what is the rate constant at 366 K?

2. (10 Points) Consider the following reaction:

 $Xe(g) + 2 F_2(g) \rightarrow XeF_4(g)$

A reaction mixture initially contains 2.24 atm Xe and 4.27 atm F₂. If the equilibrium pressure of Xe is 0.34 atm, find the equilibrium constant (K_p) for the reaction.

3. (12 Points) Determine the **rate law and the value of k** for the following reaction using the data provided.

4. (10 Points) Consider the following reaction:

$$CuS(s) + O_2(g) \leftrightarrow Cu(s) + SO_2(g)$$

A reaction mixture initially contains 2.9 M O_2 . Determine the equilibrium concentration of O_2 if K_c for the reaction at this temperature is 1.5.

5. (10 Points) Consider the following reaction:

 $2 \text{ H}_2\text{O}(g) + 2 \text{ SO}_2(g) \leftrightarrow 2 \text{ H}_2\text{S}(g) + 3 \text{ O}_2(g)$

A reaction mixture initially contains 2.8 M H₂O and 2.6 M SO₂. Determine the equilibrium concentration of H₂S if K_c for the reaction at this temperature is 1.3×10^{-6} .