Multiple Choice: (3 Points each) Place the letter associated with the correct answer in the blank to the left of each number.
\qquad 1. Given the following balanced equation, determine the overall rate of reaction.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

a) Rate $=-\frac{1}{2} \frac{\Delta\left[\mathrm{SO}_{3}\right]}{\mathrm{Dt}}$
b) Rate $=+\frac{1}{2} \frac{\Delta\left[\mathrm{SO}_{3}\right]}{\Delta \mathrm{t}}$
c) Rate $=-\frac{\Delta\left[\mathrm{SO}_{3}\right]}{\mathrm{Dt}}$
d) Rate $=+\frac{2 \Delta\left[\mathrm{SO}_{3}\right]}{\Delta \mathrm{t}}$
e) It is not possible to determine without more information.
2. What is the overall order of the following reaction, given the rate law?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \text { Rate }=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

a) 1 st order
b) 2 nd order
c) 3rd order
d) 4th order
e) Oth order
3. If the concentration at a certain time of a reactant is 6.25% of its initial value, how many half-lives has it gone through?
a) 7
b) 6
c) 3
d) 4
e) 5
4. The first-order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ at 328 K has a rate constant of $1.70 \times 10^{-}$ $3 \mathrm{~s}^{-1}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 2.88 M , what is the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 12.5 minutes?
a) 0.124 M
b) 0.805 M
c) 2.82 M
d) 0.355 M
e) 0.174 M
5. Which rate law for an elementary reaction is termolecular?
a) rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
b) rate $=k[\mathrm{~A}][\mathrm{B}]$
c) $\mathrm{rate}=\mathrm{k}[\mathrm{A}]$
d) $\operatorname{rate}=\mathrm{k}[\mathrm{A}][\mathrm{B}][\mathrm{C}][\mathrm{D}]$
e) rate $=\mathrm{k}[\mathrm{A}]^{2}$
\qquad 6. If the following is an accepted mechanism, predict the rate law for the overall reaction.

$$
2 \mathrm{NO}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{Cl} \quad \text { (overall reaction) }
$$

$$
\begin{aligned}
& \underline{\text { Mechanism }} \\
& \mathrm{NO}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \quad \text { slow } \\
& \mathrm{NO}_{2}+\mathrm{Cl} \rightarrow \mathrm{NO}_{2} \mathrm{Cl} \quad \text { fast }
\end{aligned}
$$

a) Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{Cl}_{2}\right]$
b) Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]$
c) Rate $=k\left[\mathrm{NO}_{2}\right][\mathrm{Cl}]$
d) Rate $=\mathrm{k}\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}]$
e) The rate law must be determined experimentally
7. In aqueous solution, hypobromite ion, BrO^{-}, reacts to produce bromate ion, $\mathrm{BrO}_{3}{ }^{-}$ and bromide ion, Br^{-}, according to the following chemical equation.

$$
3 \mathrm{BrO}^{-}(\mathrm{aq}) \rightarrow \mathrm{BrO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})
$$

A plot of $1 /\left[\mathrm{BrO}^{-}\right]$vs. time is linear and the slope is equal to $0.056 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. If the initial concentration of BrO^{-}is 0.80 M , how long will it take one-half of the BrO^{-}ion to react?
a) $4.5 \times 10^{-2} \mathrm{~s}$
b) 7.1 s
c) 12 s
d) 22 s
e) 30 s
_ 8. Which of the following statements is FALSE?
a) When $\mathrm{K} \gg 1$, the forward reaction is favored and essentially goes to completion.
b) When $\mathrm{K} \ll 1$, the reverse reaction is favored and the forward reaction does not proceed to a great extent.
c) When $\mathrm{K} \approx 1$, neither the forward or reverse reaction is strongly favored, and about the same amount of reactants and products exist at equilibrium.
d) $\mathrm{K} \gg 1$ implies that the reaction is very fast at producing products.
e) None of the above
9. The equilibrium constant is given for two of the reactions below. Determine the value of the missing equilibrium constant.

$$
\begin{array}{ll}
\mathrm{A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g}) \leftrightarrow \mathrm{AB}_{2}(\mathrm{~g}) & \mathrm{Kc}=59 \\
\mathrm{AB}_{2}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightarrow \mathrm{AB}_{3}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=? \\
\mathrm{~A}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g}) \leftrightarrow \mathrm{AB}_{3}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=478
\end{array}
$$

a) 3.5×10^{-5}
b) 2.8×10^{4}
c) 8.1
d) 0.12
e) 89
\qquad 10. In which of the following reactions will $\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{p}}$?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
b) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
c) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
d) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
e) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
11. The reaction below has a K{p} value of 41 . What is the value of K_{c} for this reaction at 400 K ?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a) 2.4×10^{-2}
b) 4.4×10^{4}
c) 41
d) 2.3×10^{-5}
e) 1.9×10^{4}
_12. Express the equilibrium constant for the following reaction.

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) $\mathrm{K}=\frac{[\mathrm{NaOH}]^{2}\left[\mathrm{H}_{2}\right]}{[\mathrm{Na}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
b) $\mathrm{K}=\left[\mathrm{H}_{2}\right][\mathrm{NaOH}]^{-2}$
c) $K=\frac{[\mathrm{Na}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{NaOH}]^{2}\left[\mathrm{H}_{2}\right]}$
d) $\mathrm{K}=\left[\mathrm{H}_{2}\right][\mathrm{NaOH}]^{2}$
e) $K=\frac{[\mathrm{NaOH}]^{1 / 2}\left[\mathrm{H}_{2}\right]}{[\mathrm{Na}]^{1 / 2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1 / 2}}$
_13. Consider the following reaction and its equilibrium constant:

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{C}}=0.33
$$

A reaction mixture contains $0.39 \mathrm{M} \mathrm{SO}_{2}, 0.14 \mathrm{M} \mathrm{NO}_{2}, 0.11 \mathrm{M} \mathrm{SO}_{3}$ and 0.14 M NO . Which of the following statements is TRUE concerning this system?
a) The reaction will shift in the direction of reactants.
b) The equilibrium constant will decrease.
c) The reaction will shift in the direction of products.
d) The reaction quotient will decrease.
e) The system is at equilibrium.
\qquad 14. The following reaction is exothermic. Which change will increase the concentration of SO_{2} ?

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{SO}_{3}(g)
$$

a) raising the temperature
b) adding SO_{3}
c) removing O_{2}
d) all of the above
e) none of the above
___15. Consider the following reaction at equilibrium. What effect will increasing the volume of the reaction mixture have on the system?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

a) The reaction will shift to the right in the direction of products.
b) No effect will be observed.
c) The reaction will shift to the left in the direction of reactants.
d) The equilibrium constant will decrease.
e) The equilibrium constant will increase.
16. For the above reaction, what effect will doubling the pressure by adding N_{2} to of the reaction mixture have on the system?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

a) The reaction will shift to the right in the direction of products.
b) No effect will be observed.
c) The reaction will shift to the left in the direction of reactants.
d) The equilibrium constant will decrease.
e) The equilibrium constant will increase.

Problems: Show your work for credit! For problems not requiring mathematical work, provide clear reasoning.

1. (10 Points) A reaction is found to have an activation energy of $108 \mathrm{~kJ} / \mathrm{mol}$. If the rate constant for this reaction is $4.60 \times 10^{-6} \mathrm{~s}^{-1}$ at 275 K , what is the rate constant at 366 K ?
2. (10 Points) Consider the following reaction:

$$
\mathrm{Xe}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{4}(\mathrm{~g})
$$

A reaction mixture initially contains 2.24 atm Xe and $4.27 \mathrm{~atm} \mathrm{~F}_{2}$. If the equilibrium pressure of Xe is 0.34 atm , find the equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ for the reaction.
3. (12 Points) Determine the rate law and the value of \mathbf{k} for the following reaction using the data provided.

$$
\mathrm{S}_{2} \mathrm{O}_{8} 2^{-}(\mathrm{aq})+3 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{SO}_{4}{ }^{--}(\mathrm{g})+\mathrm{I}^{-}(\mathrm{aq})
$$

$\left[\mathrm{S}_{2} \mathrm{O}_{8} 2^{-}\right] \mathrm{i}(\mathrm{M})$	$\left[\mathrm{I}^{-}\right] \mathrm{i}(\mathrm{M})$	Initial Rate $\left(\mathrm{M}^{-1} \mathrm{~S}^{-1}\right)$
0.30	0.42	4.54
0.44	0.42	6.65
0.44	0.21	3.33

4. (10 Points) Consider the following reaction:

$$
\mathrm{CuS}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

A reaction mixture initially contains $2.9 \mathrm{M} \mathrm{O}_{2}$. Determine the equilibrium concentration of O_{2} if K_{C} for the reaction at this temperature is 1.5 .
5. (10 Points) Consider the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

A reaction mixture initially contains $2.8 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ and $2.6 \mathrm{M} \mathrm{SO}_{2}$. Determine the equilibrium concentration of $\mathrm{H}_{2} \mathrm{~S}$ if K_{C} for the reaction at this temperature is 1.3×10^{-6}.

