S2014/ Exam 3/ CHEM1451/ Dooley/ April 3, 2014				
-	ce: (3 Points each) Place the letter associated with the correct answer in the eft of each number.			
1.	What is the conjugate base of H ₂ PO ₄ ⁻ ?			
a.	HPO ₄ 2-			
	PO ₄ 3-			
	H ₃ PO ₄			
	H ₃ 0+			
	OH-			
2.	Which of the following is NOT a conjugate acid-base pair?			
	H_2O/OH^-			
	H_3O^+/H_2O			
	H ₂ SO ₃ /SO ₃ - ²			
	C2H3O2 ⁻ /HC2H3O2			
e.	All of the above are conjugate acid-base pairs.			
3.	Give the characteristics of a strong acid.			
a.	ionizes completely in aqueous solutions to form H ₃ O ⁺			
	ionizes completely in aqueous solutions to form OH-			
	Partially ionizes in aqueous solutions to form H ₃ O ⁺			
	Does not form an electrolyte when in solution.			
e.	can be used to make a buffer when added to a base			
4.	The stronger the acid, then which of the following is TRUE?			
	The stronger the conjugate acid.			
	The stronger the conjugate base.			
C.	The weaker the conjugate base.			
d. e.	The weaker the conjugate acid. The strength of the acid has no affect on the conjugate base.			
c.	The strength of the actual as no affect on the conjugate base.			
5.	Calculate the hydroxide ion concentration in an aqueous solution with a pH of 9.85 at 25°C.			
a.				
b.	$4.2 \times 10^{-10} \mathrm{M}$			

NAME_____

c. $8.7 \times 10^{-10} \text{ M}$ d. $6.5 \times 10^{-5} \text{ M}$ e. $1.4 \times 10^{-10} \text{ M}$

6.	Which of the following solutions would make a good buffer system?
o. a.	A solution that is 0.10 M HC ₂ H ₃ O ₂ and 0.10 M LiC ₂ H ₃ O ₂
a. b.	A solution that is 0.10 M HF and 0.10 M NaC ₂ H ₃ O ₂
C.	
	A solution that is 0.10 M HCl and 0.10 M NH4+
_	A solution that is 0.10 M NaOH and 0.10 M KOH
e.	None of the above are buffer systems.
7.	Calculate the pH of a solution that is 0.050M in benzoic acid ($HC_7H_5O_2$) and
	$0.150 \text{ M NaC}_7\text{H}_5\text{O}_2$. For benzoic acid, the K_a = 6.5×10^{-5} .
a.	4.19
b.	4.66
C.	3.71
d.	9.36
e.	none of the above
8.	If the pKa of HCHO ₂ is 3.74 and the pH of an HCHO ₂ /NaCHO ₂ solution is
	3.11, which of the following is TRUE?
a.	[HCHO ₂] < [NaCHO ₂]
b.	[HCHO ₂] = [NaCHO ₂]
C.	[HCHO ₂] << [NaCHO ₂]
d.	[HCHO ₂] > [NaCHO ₂]
e.	It is not possible to make a buffer of this pH from HCHO ₂ and NaCHO ₂ .
9.	In a titration, a pH of 7 at the equivalence point indicates that:
a.	you are titrating a strong acid with a strong base
b.	you are titrating a strong acid with a weak base
C.	you are titrating a weak acid with a strong base
d.	you are titrating a weak acid with a weak base
e.	you are titrating a weak base with a strong acid
10.	If an ionic compound is dissolved in an unsaturated solution, how does Q
	compare with K_{Sp} .
a.	$Q < K_{SD}$
	$Q > K_{Sp}$
	$Q = K_{SD}$
	$Q = K_{SP}$ Q is totally unrelated to K_{SP} , so there is no way to tell
e.	Q is related to K, but doesn't tell you if a solution is saturated
C.	2 is related to 15, but does it ten you it a solution is sutuitated

Problems: Show your work for the following problems. This may include writing a reaction, a K expression, and even some math.

1.		(5 Pts) Write the reaction for pyridine (C_5H_5N), a Bronsted-Lowry base, with water. Include phases.			
	a.	(3 Pts) Write the K_b expression for this base			
	b.	(4 Pts) If the K_b for $C_9H_7O_4$ is $1.7x10^{-9}$, what is the K_a value for the conjugate acid of pyridine?			
	C.	(6 Pts) What is the pH of a 0.42M solution of pyridine?			

2. (10 Pts) Calculate the concentration of Hg^{2+} in a solution containing $HgBr_2$ (K_{sp} = 6.2 x 10⁻²⁰) at equilibrium in a 1.0 x 10⁻³M solution of NaBr.

3. (10 Pts) A 1.00 L buffer solution is 0.250 M in HF and 0.250 M in NaF. Calculate the pH of the solution after the addition of 100.0 mL of 1.00 M HCl. The K_a for HF is 3.5×10^{-4} .

4.	(10 Pts) A 100.0 mL sample of 0.20 M HCl is titrated with 0.15 M KOH.	Determine
	the pH of the solution after the addition of 145 mL of KOH.	

5. (12 Pts) A 100.0 mL sample of 0.10 M NH3 is titrated with 0.15 M HN03. Determine the pH of the solution after the addition of 80.0 mL of HN03. The K_b of NH3 is 1.8×10^{-5} .

6. (12 Pts) Determine the concentration of CO3 2 - ions in a 0.18 M H₂CO3 solution. Carbonic acid is a diprotic acid whose K_{a1} = 4.3 × 10-7 and K_{a2} = 5.6 × 10-11.