NAME	
S2014/CHEM	1451/Dooley/Exam 4
This has been	n edited to only contain electro-chem material!!
Multiple Choi	ce: (3Pts each)
1.	What element is being oxidized in the following redox reaction?
MnO4 ⁻ (ad	$q) + H2C2O4(aq) \rightarrow Mn2+(aq) + CO2(g)$
a)	С
b)	
c)	Mn
d)	H
2.	What is the reduction half-reaction for the following overall galvanic cell
reactio	n?
	$Co2+(aq) + 2 Ag(s) \rightarrow Co(s) + 2 Ag+(aq)$
	$Ag(s) + e^{-} \rightarrow Ag^{+}(aq)$
	$Ag+(aq) + e- \rightarrow Ag(s)$
*	$Co2+(aq) + 2 e \rightarrow Co(s)$
d)	$Co2+(aq) + e- \rightarrow Co(s)$
	Identify the location of oxidation in an electrochemical cell.
<i>'</i>	the anode
	the cathode
,	the electrode
d)	the salt bridge
e)	the socket
4.	Determine the redox reaction represented by the following cell notation.
	$Mg(s) \mid Mg^{2+}(aq) \mid Cu^{2+}(aq) \mid Cu(s)$
a)	$Cu(s) + Mg^{2+}(aq) \rightarrow Mg(s) + Cu^{2+}(aq)$
b)	$Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq)$
c)	$2 \text{ Mg(s)} + \text{Cu}^{2+}(\text{aq}) \rightarrow \text{Cu(s)} + 2 \text{ Mg}^{2+}(\text{aq})$
d)	$2 \text{ Cu(s)} + \text{Mg}^{2+}(\text{aq}) \rightarrow \text{Mg(s)} + 2 \text{ Cu}^{2+}(\text{aq})$
e)	$3 \text{ Mg(s)} + 2 \text{ Cu}^{2+}(\text{aq}) \rightarrow 2 \text{ Cu(s)} + 3 \text{ Mg}^{2+}(\text{aq})$

5.	Which of the following is the strongest reducing agent?
a)	Al(s)
b)	Zn(s)
c)	Mg(s)
d)	$Al^{3+}(aq)$
e)	$Mg^{2+}(aq)$
6.	Which of the following metals will react in nitric acid but not hydrochloric?
	Fe
,	Pb
c)	Cu
,	Sn
e)	Ni
potenti	Use the standard half-cell potentials listed below to calculate the standard cell fall for the following reaction occurring in an electrochemical cell at 25°C. (The on is balanced.)
3 Cl ₂ (g) + 2 Fe(s) \rightarrow 6 Cl ⁻ (aq) + 2 Fe ³⁺ (aq)
Cl ₂ (g)	$+ 2 e^{-} \rightarrow 2 Cl^{-} (aq) E^{\circ} = +1.36 V$
_	e^{-1} aq) + 3 e^{-1} \rightarrow Fe(s) e^{-1} \rightarrow Fe(s) e^{-1}
a)	+4.16 V
,	-1.40 V
,	-1.32 V
,	+1.32 V
e)	+1.40 V
8.	Determine which of the following pairs of reactants will result in a spontaneous
reactio	n at 25°C.
a)	$Pb^{2+}(aq) + Cu(s)$
b)	$Ag^+(aq) + Br^-(aq)$
c)	$Li^{+}(aq) + Al(s)$
d)	$Fe^{3+}(aq) + Ni(s)$
	None of the above pairs will react.
9.	How many electrons are transferred in the following reaction? (The reaction is
unbala	

$$I_2(s) + Fe(s) \rightarrow Fe^{3+}(aq) + I^- (aq)$$

- a) 1
- b) 2
- c) 6 d) 3

Short Answer/Problems: Show your work!

3. Balance the following redox reaction if it occurs in acidic solution.

$$MnO4^- \ (aq) + H_2C_2O_4(aq) \rightarrow \ Mn^{2+}(aq) + CO_2(g)$$

Oxidation Half Reaction:	Reduction Half Reaction:

a) If this reaction occurred in basic conditions, how would the balancing process have changed?

4. An electrochemical cell is based on these two half-reactions:

$$Pb(s) \rightarrow Pb^{2+}(aq) + 2e$$

$$MnO_4^-(aq) + 4 H^+(aq) + 3e - \rightarrow MnO_2(s) + 2 H_2O(l)$$

a) Draw the galvanic cell below. Indicate the direction of e- flow, the positions of each Reactant and Product (Pb(s), Pb²⁺, MnO₄-, H⁺ and MnO₂). Because MnO₂ does not conduct electricity, you will need to use a Pt electrode in one half-cell. Do not forget your salt bridge! Use a salt bridge containing KNO₃ solution, and show the directions the ions flow.

b) Calculate E cell.

c) If the concentrations of the aqueous ions are changed to the following, what is the new, non-standard E_{cell} ? $[Pb^{2+}] = 0.15M$, $[MnO_4^-] = 1.50M$, and $[H^+] = 2.0 M$