Solutions

Chapters 5 and 6

Dipole Interactions and H-bonding

© 2007 W. H. Freeman and Company

Figure 6-3 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Figure 8-10 Investigating Chemistry, First Edition © 2007 W.H.Freeman and Company

Ammonia

Unnumbered figure pg 253 Investigating Chemistry, First Edition © 2007 W.H.Freeman and Company

Table 8.1Electronegativity of theNonmetal Elements

Element	Relative Electronegativity
Fluorine	4.0
Oxygen	3.5
Chlorine	3.0
Nitrogen	3.0
Bromine	2.8
Carbon	2.5
Sulfur	2.5
lodine	2.5
Selenium	2.4
Hydrogen	2.1
Phosphorus	2.1

Figure 5-1 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Water (H₂O) has a bent molecular geometry.

Unnumbered figure pg 247 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Figure 5-3 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Figure 5-9 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Diz-Files: Discrepent and Bizarre

RetroJunk.com

Real life 15 stranger than fiction!

How do germs make us sick?

Two kinds: bacteria and viruses

Bacteria make us sick by invading and growing in our tissues

especially noses, throats, stomachs and lungs

Viruses are AMAZING but different

Viruses actually go into our cells and put their directions for making baby viruses into our DNA.

They force our cells to make tons of baby viruses that infect other cells

THE PLAYERS:

BCELL Kanobi

DARTH BACTERIA OR DARTH VIRUS

VIRUSES ARENT REALLY SHAPED LIKE DARTHVIRUS

http://www.wellesley.edu/Chemistry/Chem101/dna-viruses/viruses.jpg

THE COOLEST VIRUS EVER!

Bacteriophage Structure

http://www.vet.upenn.edu/schoolresources http://www.microbeworld.org/img/aboutmicro/gallery/gid_07_t4.jpg http://www.yildizindunyasi.net/photogallery/bacteriophage.jpg http://www.nature.com/news/2003/031013/images/bacteriophage_180.jpg

Hmmmm...

Real antibody

Immunity and Vaccination

Immunity and Vaccination 2

Vaccinations contain Weakened or dead viruses or Virus parts

Immune system responds

B-cells make antibodies

Become memory B-cells

Memory B-cell

Human DNA Replication

Makes DNA copy highly accurate

HIV DNA Replication

PERSONAL PROPERTY

DEPER

RT

Viruses use an enzyme called Reverse Transcriptase (RT) to copy its RNA into DNA

Builds DNA by putting in bases that match each strand thereby making a copy

> CANNOT proof-read to make sure right so makes a lot of errors Called mutations

Makes DNA copy highly mutated

HIV Cocktail

Three enzymes important for HIV to replicate:

Reverse Transcriptase: Copies virus RNA into DNA Very, Very error prone

Integrase: puts viral DNA copy into host cell's DNA

Protease: Cuts proteins into functional pieces

HIV Cocktail

Because HIV can mutate so rapidly cant just knock out one enzyme or mutations provide resistance to the drug

So have to knock out more than one (preferably all three)

Makes it much less likely that mutations will allow the

virus to survive in the presence of many drugs with multiple targets.

The TRUTH is out there...

Figure 5-2 Investigating Chemistry, First Edition © 2007 W.H.Freeman and Company

Figure 5-10 Investigating Chemistry, First Edition © 2007 W.H.Freeman and Company

Table 5.2Names, Formulas, and Sources of
Various Acids

Name	Formula	Strength	Common Use
Hydrochloric acid chemicals	HCI	Strong	Pool
Nitric acid	HNO ₃	Strong	Acid rain
Sulfuric acid	H ₂ SO ₄	Strong	Car batteries
Acetic acid	HC,H,O,	Weak	Vinegar
Carbonic acid	H,CO,	Weak	Soft drink
Hydrofluoric acid	HĒ	Weak	Wheel cleaner
Phosphoric acid	H ₃ PO ₄	Weak	Hair coloring

Table 5-2 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Table 5.3 Names, Formulas, and Sources of Various Bases

Name	Formula	Strength	Common Use
Ammonium hydroxide	NH₄OH	Weak	All purpose cleaners
Sodium hydroxide	NaÓH	Strong	Drain cleaners
Potassium hydroxide	КОН	Strong	All purpose cleaners
Calcium hydroxide	Ca(OH) ₂	Strong	Toilet bowl cleaners

Table 5-3 Investigating Chemistry, First Edition © 2007 W. H. Freeman and Company

Hemoglobin (Hb) is a tetrameric protein (2^{α} and 2^{β} subunits)

- binds O₂ cooperatively
- each Hb can bind 4 O₂

H+ ions modulate O₂ binding to hemoglobin

$$Hb + O_2 \iff Hb(O_2) + H^+$$
$$H^+$$

high H^+ / low O_2 (capillaries), O_2 is released low H^+ / high O_2 (lungs), O_2 is bound

Bohr Effect

Called Bohr Effect (when O_2 binds to Hb, H⁺ is released)

$$CO_2 + H_2O \implies H^+ + HCO_3^-$$

Relatively slow, need an enzyme to speed it up! - Carbonic Anhydrase in RBC speeds up 100X

CO₂ waste is produced from metabolic processes in cells
 diffuses out of cell into blood stream

In Capillaries :

CO₂ Transport

In lungs:

© 2007 W.H.Freeman and Company

