Sickle Cell Mutation

Hemoglobin is usually soluble in red blood cell

Biochemistry 2nd ed, Voet/Voet

Prions

Infectious proteins

- no DNA or RNA present
- causes Creutzfeldt-Jakob Disease
 - loss of memory
 - loss of motor skills
 - dementia
 - scraping and biting off of skin
 - invariably fatal

Everyone has normal protein in brain

- Prp

- mostly α -helical, soluble

In patients with disease

- have Prpsc

- -same protein, different conformation -mostly β-sheet, insoluble
- altered protein converts the normal protein to the altered conformation

- Catch this disease....
 - hereditary
 - sporatic
 - eating infected meat (human or cow)

Each hemoglobin has 4 subunits, 2α and 2β Each hemoglobin can bind 4 molecules of O_2 Binding of each O_2 makes binding the rest easier Called Cooperativity

Change in 3° and 4° structure upon O₂ binding.

<u>deoxyhemoglobin</u>

oxyhemoglobin

Biochemistry 2nd ed, Voet/Voet

Mechanism of Phosphoglycerate Mutase

Biochemistry 2nd ed, Voet/Voet

BPG Modulates O₂ Binding to Hb

Fig 9.22

BPG decreases Hb affinity for O₂ BPG bound in T form (stabilizes) BPG released in T to R conversion Without BPG, O₂ not released

*BPG increases in altitude adaptation

*Fetal Hb has reduced affinity for BPG

His changed to Ser

Higher affinity for O₂ Biochemistry 2nd ed, Voet/Voet