Vitamin C (ascorbic acid)

Ascorbic acid

Chemical Forms of Thiamine (B1)

∨ Pyrimidine ring Shown in blue

Thiamine

∨ The reactive C
Shown in red

$$H_3$$
C H_2 H_4 H_4 H_5 H_5 H_6 H_6

Thiamine Pyrophosphate

Chemical Forms of Riboflavin (B2)

Riboflavin-the flavin rings are shown in green

FMN
Flavin Mononucleotide
We modify riboflavin by
a phosphate ester shown
in blue.

Chemical Forms of Riboflavin (B2) continued

FAD-Flavin Adenine Dinucleotide We modify FMN by adding a ribose and adenine ring shown in red.

Actions of Riboflavin (B2)

FAD Oxidized Oxidation/reduction sites are shown in red.

FADH₂ Reduced Oxidation/reduction sites are shown in red.

Chemical Forms and Actions Pyridoxine (B6)

Pyridoxine

Pyridoxal Phosphate
We modify by addition
Of phosphate ester (red)
And oxidation of an alcohol
to an aldehyde (blue)

Chemical Forms of Niacin

Niacin

Chemical Forms of Niacin Continued

NAD Nicotinamide Adenine Dinucleotide The nicotinamide is shown in blue. NADP Nicotinamide Adenine Dinucleotide The nicotinamide is shown in blue.

Actions of Niacin

NAD+ Oxidized Oxidation/reduction sites shown in Oxidation/reduction sites shown in red.

NADH Reduced red.

Actions of Niacin continued

NADP+ Oxidized red.

NADPH Reduced Oxidation/reduction sites shown in Oxidation/reduction sites shown in red.

Chemical Forms and Actions of Folic Acid

$$\begin{array}{c|c} H_2N & N & N & CH_2NH & CH_2NH & CH_2 & CH$$

Folate is modified to tetrahydrofolate (with 5 glutamates). Tetrahydrofolate (THF) carries methyl groups at the nitrogens shown in red

Chemical Forms of B₁₂

$$H_2N$$
 H_3C
 H_3C
 CH_3
 CH_3

Chemical Forms of Pantothenic acid

$$H_{2}C-OH$$
 $H_{3}C-C-CH_{3}$
 $C=O$
 NH
 $H_{2}C$
 CH_{2}
 $C=O$
 OH

Pantothenic Acid

Actions of Pantothenic acid

Chemical Forms and Actions of Biotin

HN
$$C$$
 NH C O C O C CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3$ CH $_4$ CH $_5$ CH

Biotin is attached to the enzyme through a Lysine residue. The N shown in red is where the CO_2 is carried.

Chemical Forms and Actions Vitamin A

$$H_3C$$
 CH_3
 C
 CH_3
 C
 CH_3
 C
 CH_3
 C

Retinoic Acid

Chemical Forms of Vitamin D

$$\begin{array}{c} H_3C \\ H_3C \\ CH_3 \\ CH_3 \\ \end{array}$$

Chemical Forms of Vitamin E (tocopherols)

Chemical Forms of Vitamin K