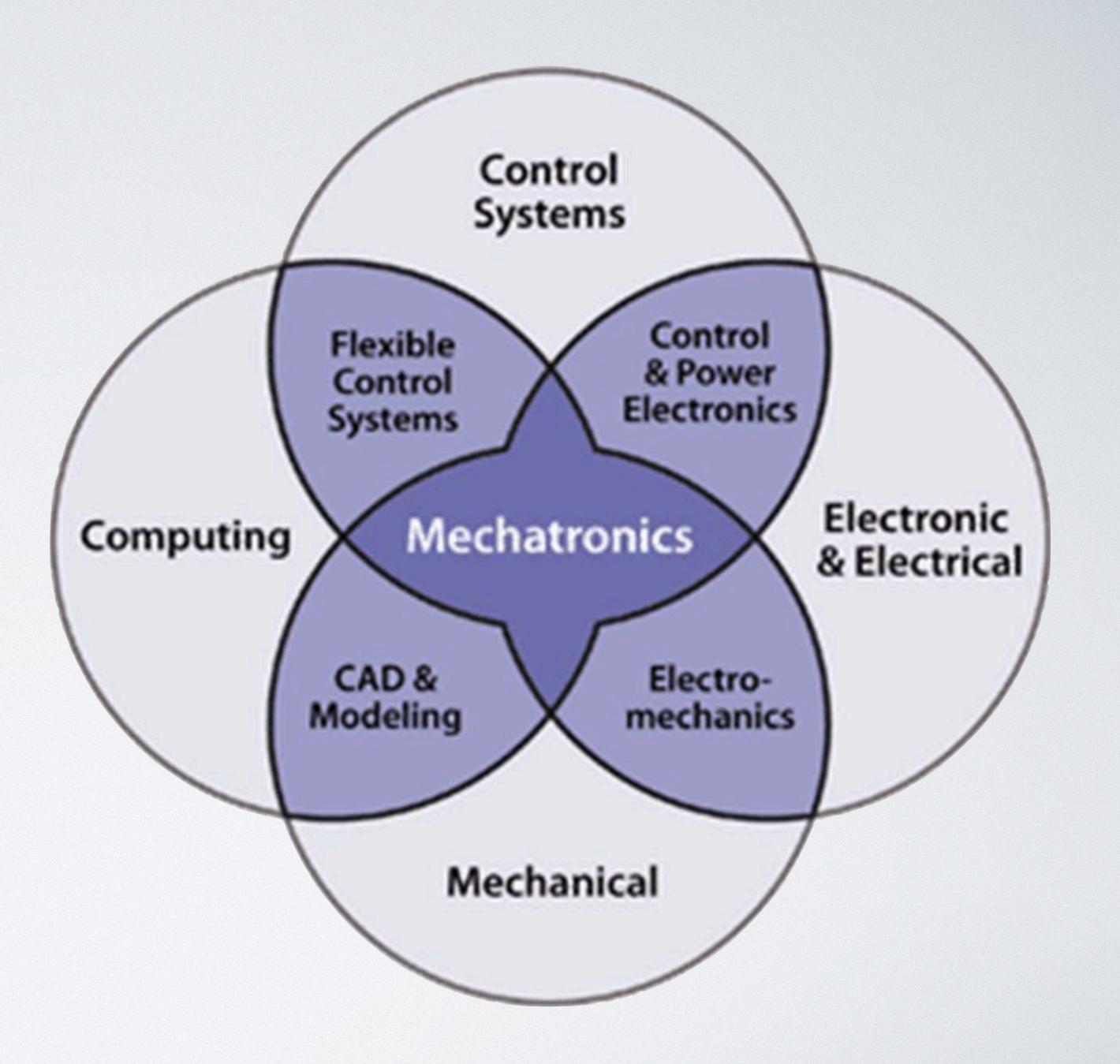

WHAT IS ENGINEERING? WHAT DO ENGINEERS DO?

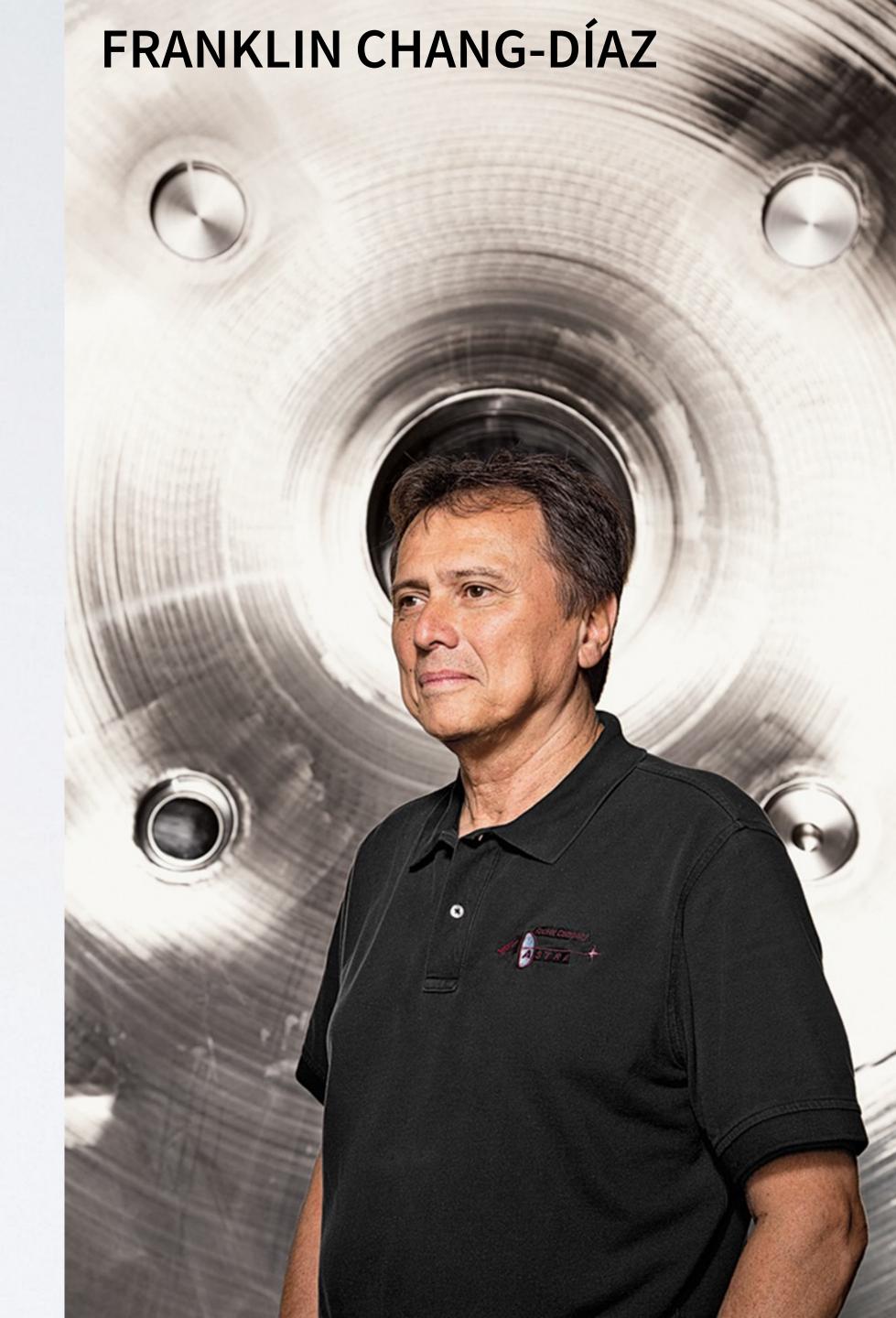
Take a minute and write down 5-7 things you think engineering is or what you think engineers do.



SO, WHAT IS ENGINEERING?

Short answer: Everything.

ENGINEERING DISCIPLINES



MECHANICAL ENGINEERS

- Alba Colón
 BSME, University of Puerto Rico
 Director of Competition Systems,
 Hendrick Motorsports
 Former NASCAR Sprint Cup Program
 Manager at General Motors
- Nathaniel C. Wyeth

 BSME, University of Pennsylvania
 Invented polyethylene terephthalate
 (PET), the soda-bottle plastic
- Franklin R. Chang-Díaz
 BSME, University of Connecticut
 PhD, Applied Plasma Physics, MIT
 Founder, Ad Astra Rocket Company

CAREER PATHS

MECHANICAL **ENGINEERING**

BY DARIA MERKUSHEVA

IS MECHANICAL ENGINEERING A GOOD CAREER CHOICE?

Absolutely! Your work can change the world.

◆ A secure future:

Job growth 4% from 2018 to 2028 and even more, depending on the industry.

◆ A broad set of expertise:

Technical and mechanical skills, math skills, IT skills and analytical thinking, communication and leadership skills, problem-solving skills, creative thinking.

- ♦ A good salary: Median annual wage was \$87,370 in May 2018.
- You can work practically in any industry anywhere in the world.

HOW TO START A CAREER IN MECHANICAL ENGINEERING?

An Entry-Level Job in one of the industries employing the biggest number of engineers

INDUSTRIES

ENGINEERING SERVICES

These are consulting companies with a project-based work structure.

SKILLS NEEDED

- Project management skills
- Communication skills
- CAD, simulation, and other software proficiency

MACHINERY MANUFACTURING

These are assembly plants and suppliers that work on designing and manufacturing industrial and commercial machinery.

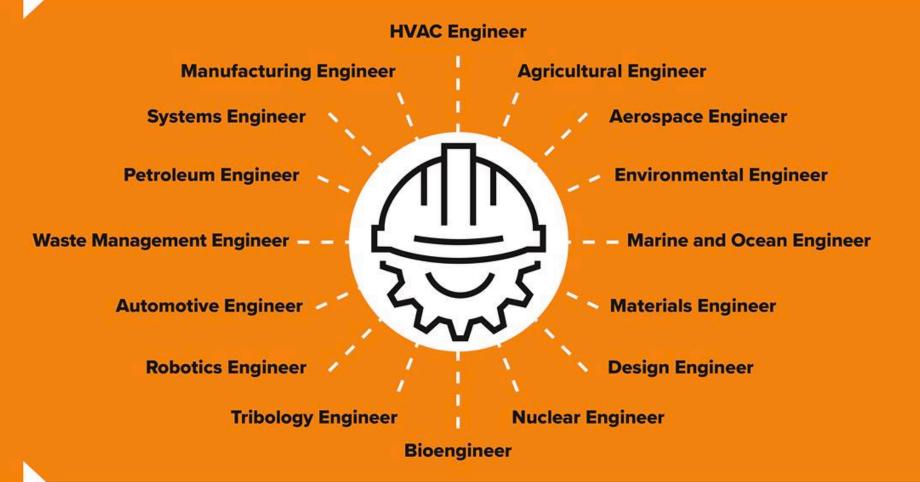
- Technical skills including design, testing and analysis, fabrication and machining processes
- Additive manufacturing familiarity
- CAD, simulation, and other software proficiency

These are private, public, government, or corporate R&D laboratories and

Creativity

- Problem-solving skills
- Math skills
- Analytical thinking

AEROSPACE MANUFACTURING


These are the facilities that design and build engines and other components for the aerospace industry.

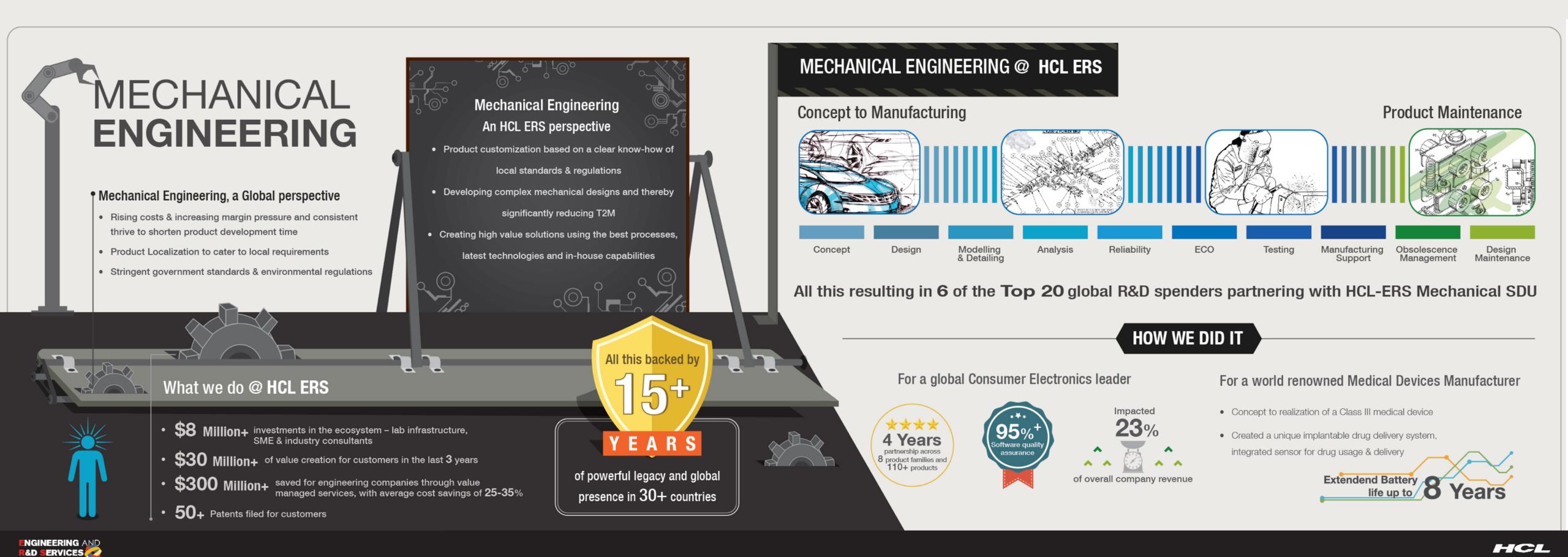
- Mechanical skills, understanding aerospace technology
- CAD and other software proficiency
- Technical skills, including machining processes
- Communication skills and creativity

FEDERAL GOVERNMENT

The U.S. federal government is the country's biggest employer, and these jobs include working for NASA, Department of Defense, or other agencies. They will vary from job to job

WHAT JOBS CAN A MECHANICAL ENGINEER DO?

HOW MUCH DO MECHANICAL ENGINEERS GET PAID?


Salaries vary because of many factors, including work experience, degrees, certifications, location, and the industry. Here are some annual mean wages that mechanical engineers are paid, depending on their industry:

Oil and Gas Extraction\$126,880	
Waste Treatment and Disposal\$120,200	4
Waste Management Services \$109,560	
Petroleum and Coal Products Manufacturing \$108,980	
Spectator Sports \$107,110	
Scientific R&D \$103,720	
Aerospace Manufacturing \$103,000	
Federal Government\$99,370	
Engineering Services \$97,310	
Engine, Turbine, and Power Transmission	
Equipment Manufacturing\$96,890	
Transportation Equipment Manufacturing \$86,030	
Household Appliance Manufacturing \$84,440	
Machinery Manufacturing \$84,240	

Source: U.S. Bureau of Labor Statistics

ADAPTABILITY!

Career opportunities to suit any/every possible interest

CIVILENGINEERS

- Florentino Pérez Rodríguez
 BSCE, Technical University of Madrid
 Chairman and CEO of Grupo ACS
 President of Real Madrid
- ▶ Srinivasa "Hal" Iyengar

 BSCE, University of Mysore

 MSCE, University of Illinois

 Project Engineer: John Hancock Center, Sears Tower, McCormick

 Exposition Center, Soldier Field, Millennium Park
- ▶ John A., Washington, and Emily Warren Roebling: father, son, and wife Designed & built Brooklyn Bridge
- BSCE, University of Colorado
 First female member of the American Society of Civil Engineers

ROUGH ROAD AHEAD

THE ECONOMIC IMPACT OF AMERICA'S FAILING TRANSPORTATION INFRASTRUCTURE BY 2020

Families have a LOWER STANDARD OF LIVING.

American families would earn \$700 less each year.

And spend **\$360 more** each year.

Total impact on each family's budget: \$1,060 per year.

American businesses and workers PAY A HEAVY PRICE.

America would lose **877,000** jobs.

Another **234,000** jobs exist only if many more workers agree to paycuts.

transportation costs increase \$430B.

AMERICA LOSES GROUND in the global economy.

U.S. exports would drop by \$28 billion.

79 of 93 different tradable commodities.

America's gross domestic product underperforms by \$897B.

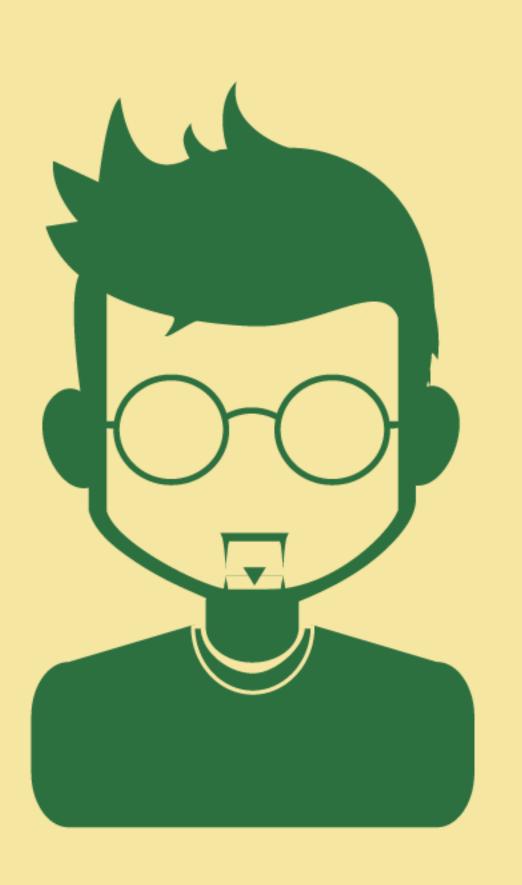
COMPUTER ENGINEERS

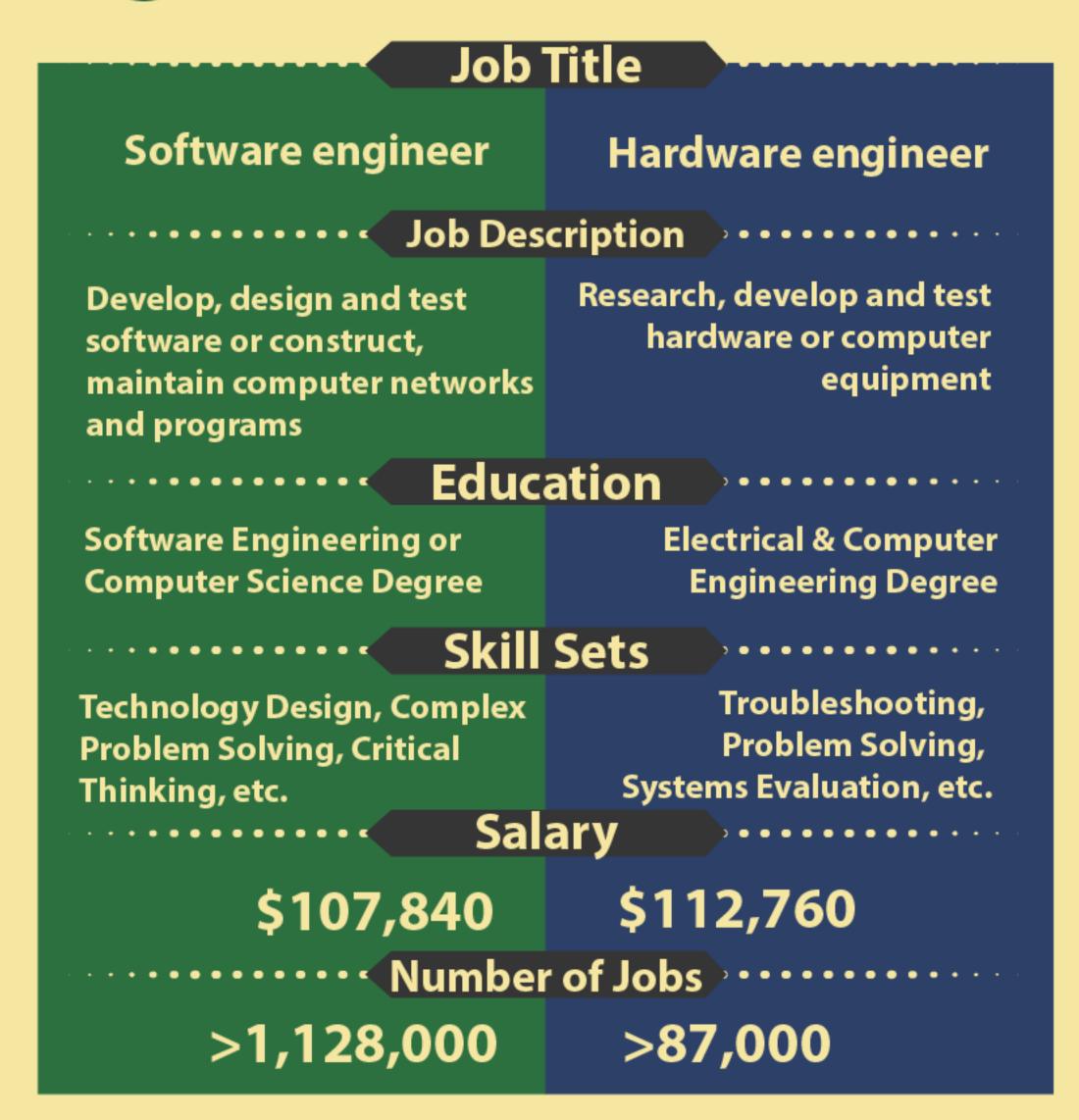

▶ Tim Berners-Lee

BA Physics, Queen's College, Oxford "Invented" the internet: devised/implemented the first information management system for remote communication between HTTP client and server Director of W3C

Sergey Brin BSCS, University of Maryland MSCS, Stanford University Co-founder of Google

Rear Admiral Grace Hopper, USN BS Physics, Vassar MS, PhD Mathematics, Yale University Developed first functional compiler for UNIVAC


Lynn Conway BSEE, MSEE, Columbia University System design pioneer: Literally wrote the book on VLSI



Software Engineer vs Hardware Engineer

ComputerCareers.org

CONSIDER A CAREER IN CYBERSECURITY?

As cybersecurity threats continue to grow, the demand for qualified candidates increases, but ...

MORE THAN of global IT professionals believe there is a significant shortage of cybersecurity professionals¹

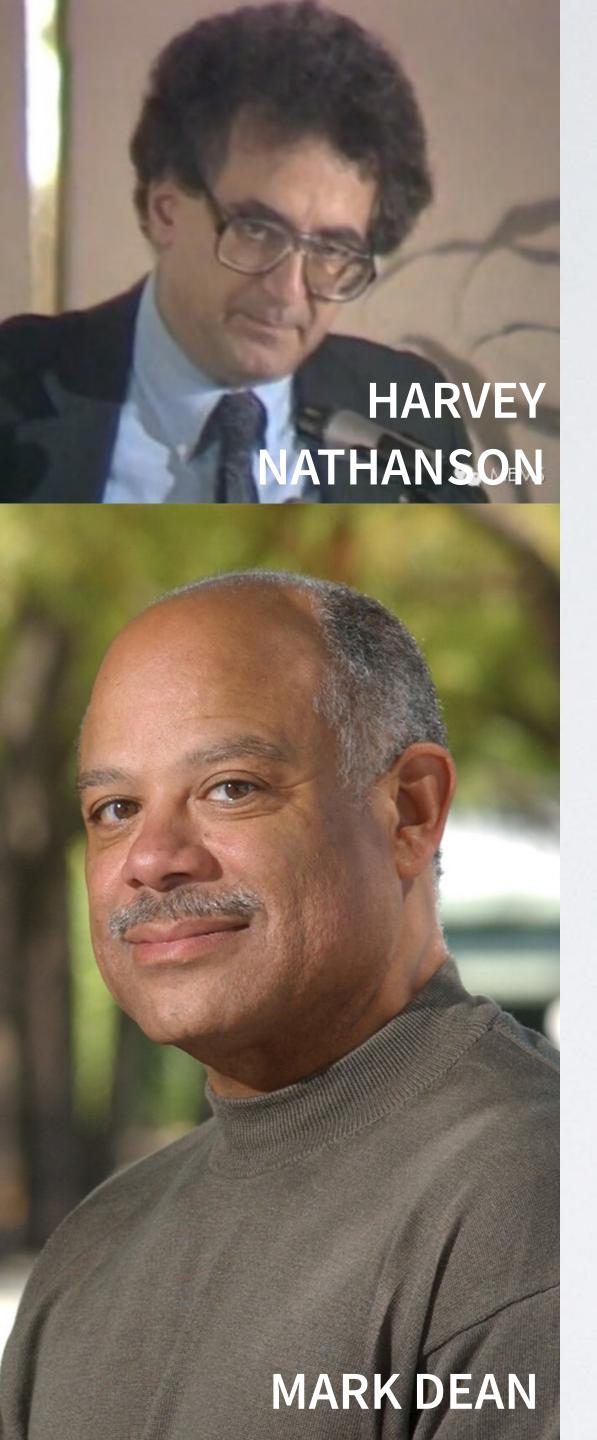
Information Security Analyst was ranked as the 5th hardest position to fill in 20

How many cybersecurity professionals will be needed in 2019?

If job security isn't enough to convince you to work in cybersecurity, the

for 5 popular industry positions are⁵

Software Developer \$102,280


Network Architect \$101,210

Cybersecurity

Systems Engineer

ELECTRICAL ENGINEERS

Harvey Nathanson

BSEE, Carnegie-Mellon University
Patented first MEMS device (holds more than 50 patents)

Dr. Mark Dean

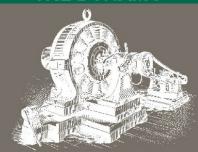
BSEE, University of Tennessee Knoxville PhD EE, Stanford University First African-American fellow at IBM

Dr. Sung-Mo Kang

BSEE, Fairleigh Dickinson MSEE, SUNY Buffalo PhD, UC Berkeley Developed world's first 32-bit microprocessor chips

José Hernandez

BSEE, University of the Pacific
MSEE, UC Santa Barbara
Developed the first full-field digital mammography imaging system; Turned down 11 times before finally being selected by NASA for astronaut training



HOW **ELECTRICAL ENGINEERING** HAS SHAPED THE MODERN WORLD

From light bulbs and television, to cell phones and GPS, modern advances in electrical engineering have illuminated, informed and connected the world.

THE DYNAMO

MOTORS

RADAR & RADIOLOCATION

After World War I, the threat attack stimulated work on this technology. Radar was considered a high priority competitive advantage during World War II, and the military poured resources into its development. By the time the United States entered World War II in 1941, the 105-MHz SCR-270 and the 205-MHz

1930's

1941

TRANSISTORS

MICROPROCESSORS

SATELLITES

INTERNET PROTOCOL

version 4 and **RFC 793** introduced the

MODERN SATELLITE COMMUNICATIONS

Late

2000

Mid-2000s

1990s

1947

1968

1979

1981

1990's through 2000

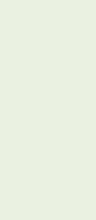
OPTICAL FIBER

Wi-Fi

standards and 2.4- and 5-GHz bands.

SPACE EXPLORATION

engineering, braving the inhospitable


Martian environment in their quest

SMART PHONES

2012

2004/

THE FUTURE OF ELECTRIC ENGINEERING

THE FLEXIBLE SMARTPHONE WITH A HOLOGRAPHIC DISPLAY

The image on the screen can be seen by the naked eye, without the use of 3D-glasses and other devices, and the three-dimensional image can be watched by several users who are on different sides of the gadget.

DRONES

Currently being used for photography, reconnaissance and warfare. This technology is becoming more commonplace both at home and within the military.

A new wall-climbing drone can even approach any type of structure by flying and sticking to the target, changing its pose using a perching mechanism.

THE FUTURE SMARTWATCH

A technology that does not require touching the touch screen or the device itself.

The development, dubbed SkinTrack, consists of a special ring and sensitive receiver in the form of a bracelet, which together can convert tag contact into signals.

More and more, electrical engineering is reaching into new and exciting fields. Future electrical engineers will need to be ready to collaborate across industries such as wearable technologies, entertainment and sustainable manufacturing.

1928

1887

1831

1878

TELEVISION

THE LIGHT BULB

COMI OTERS

CS/EE Graduate Salary Survey 2015-2016

conducted by Stanford Computer Forum with responses from 150 Undergraduates | 175 Masters | 60 Ph.D.s

STOCK options significantly higher for Ph.D.s

offer acceptance

- ✓ location factors
- ✓ company
- people they work with
- environment/culture
- ✓ salary/benefits
- ✓ scope of work
- growth opportunities

average salaries offered

PH.D.

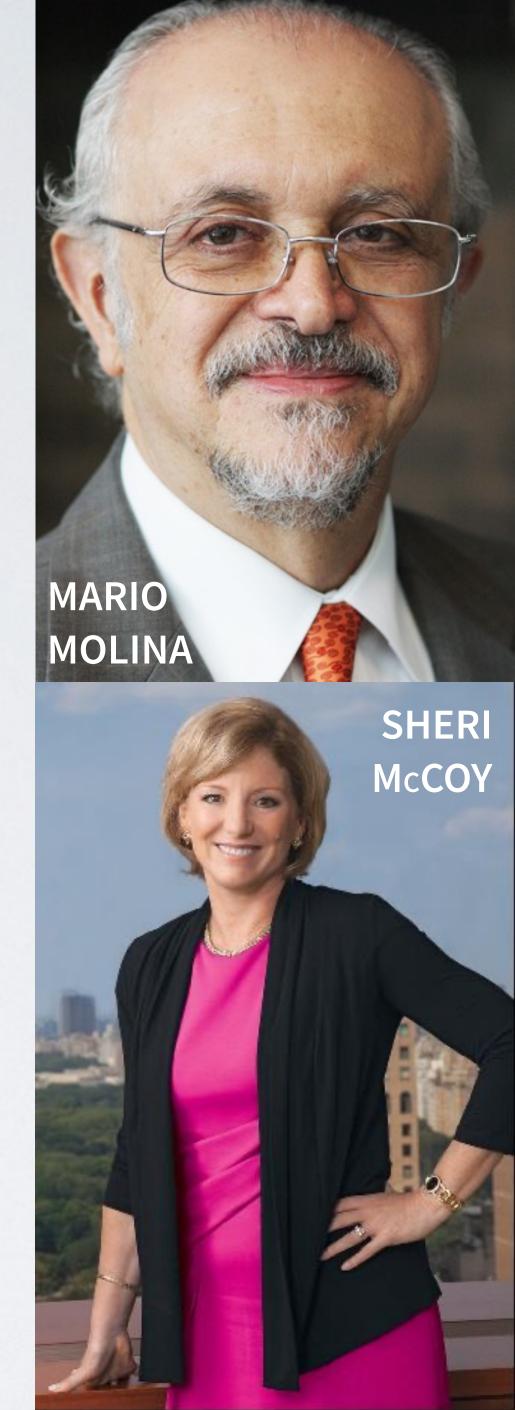
average \$15,556 UG
signing \$14,652 MASTERS
bonus \$28,533 PH.D.

CHEMICAL ENGINEERS

Alicia Boler Davis

BSCE, Northwestern University
MS, Engineering Science, Rensselaer Polytechnic
Former Executive Vice President of Global Manufacturing, General Motors
Current CEO of Alto Pharmacy

Dr. Robert W. Gore

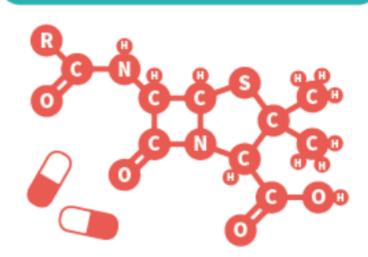

BSCE, University of Delaware MSCE, PhD, University of Minnesota Invented Gore-Tex technical fabric

Dr. Mario Molina

BSCE, National Autonomous University of Mexico PhD, University of California, Berkeley 1995 Nobel Prize in Chemistry for discovery of ozone depletion due to CFCs

Sherilyn McCoy

BS Chemistry, U Massachusetts Dartmouth
MSCE, Princeton University
MBA, Rutgers University
Holds five US patents, current CEO of Avon Products

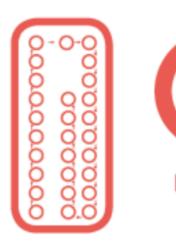

WHAT'S CHEMISTRY EVER DONE FOR US?

Science plays a vital role in our health, safety, economies, and governments. Here are just some of the ways chemistry impacts your everyday life.

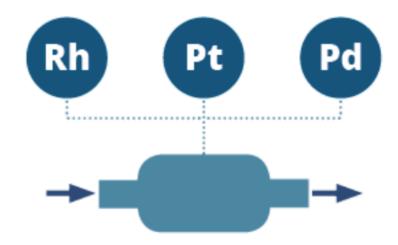
ANAESTHETICS

We take surgery under anaesthesia for granted today, but the first anaesthetics were only discovered in the mid-1800s. Subsequently chemists have made many more.

ANTIBIOTICS


Bacterial infections were a common cause of death until antibiotics became available the 1930s.
Chemists have since discovered numerous classes of antibiotics.

BATTERIES


Both alkaline batteries and the lithium batteries in your phone were developed by chemists, and they're still working on making improvements to them.

BIRTH CONTROL

The first oral contraceptives became available in the 1960s after chemists developed synthetic compounds that could affect hormone levels in the body.

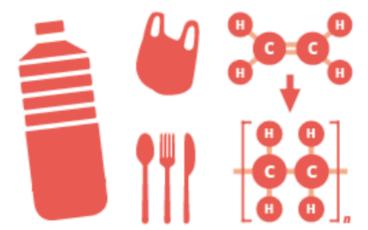
CATALYTIC CONVERTERS

Catalytic converters, developed in the 1960s and 70s, convert toxic gases and pollutants in car exhaust gas into less harmful emissions, helping to reduce pollution.

FERTILISERS

 $N_2 + 3H_2 \Rightarrow 2NH_3$

The Haber process, developed in the early 1900s, creates 450 million tons of nitrogen fertiliser per year.

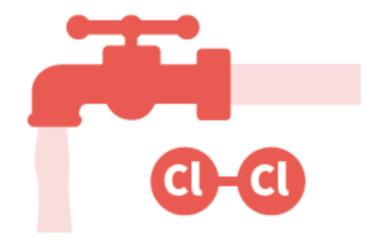

This is vital for growing food and supporting the world's population.

FUELS

Petrol and diesel extracted from crude oil currently fuel the majority of our cars. Chemists are also investigating cleaner alternatives, such as hydrogen fuels.

PLASTICS

Plastics are everywhere in our day-to-day lives. Over the years chemists have developed a range of plastics for different uses, including clothing and food packaging.


SCREENS

If you're reading this on a screen, you have chemists to thank.

Different types of screens and touch screens all rely on materials developed by chemists to work.

WATER TREATMENT

Water chlorination began in the early 1900s and kills bacteria and microbes, helping prevent the spread of diseases such as cholera. It also keeps swimming pools clear!

MATERIALS ENGINEERS

Leland Melvin

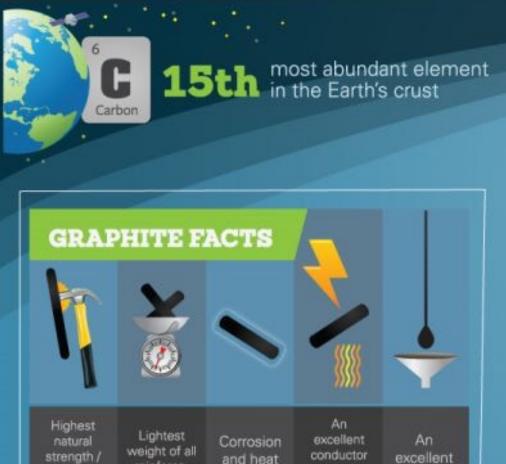
BS Chemistry, University of Richmond MS Materials Science, University of Virginia 11th round draft pick, Detroit Lions 1986 565 hours in space (2 shuttle missions)

Sumio lijima

BS Engineering, University of Electro-Communications (Tokyo) MS, PhD Physics, Tohoku University Discovered the atomic structure and helical character of multiwall and single-wall carbon nanotubes

▶ Paul (Ching-Wu) Chu

BS Physics, Taiwan Provincial Cheng Kung University
MS Physics, Fordham University
PhD Physics, University of California, San Diego
First scientist to demonstrate high-temperature superconductivity



The Driving Force Behind Green Technology

morphous

FLAKE

THE GRAPHITE MARKET

by green

technology

SUPPLY

70% of the world's graphite market.

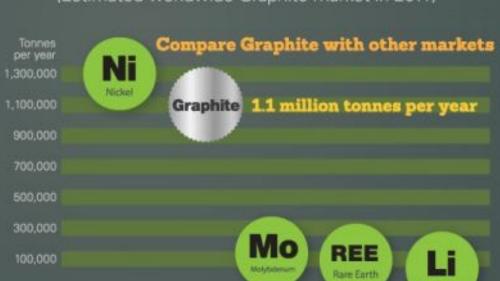
Flake Graphite

60% Amorphous

Graphite

Highest price Lowest supply

High purity crystal flake graphite supply is very limited. batteries, fuel cells, and other green tech.



DEMAND

USD \$12,000,000,000

(Estimated worldwide Graphite market in 2011)

GREEN TECHNOLOGY

DRIVING GRAPHITE DEMAND

I O

LITHIUM ION BATTERIES

Lithium ion batteries are found in many modern electronic devices.

FACT There is actually 10-20x more graphite in a Lithium Ion battery than Lithium

In the near future, use of electric cars will increase dramatically. Electric car batteries contain a significant amount of graphite.

For example:

"kgs

graphite in a smartphone

The number of electric vehicles expected to be in use by 2017

FUEL CELLS

Fuel Cells have the potential to use as much graphite as all other uses.*

Proton Exchange Membrane technology requires large amounts of graphite, and is the most likely technology to be developed for use in light vehicles, buildings, and smaller applications.† *US Geological Survey †US Department of Energy

NUCLEAR POWER

China is currently developing and testing Pebble Bed reactor designs. In April 2011, China began building a 210 MW fourth-generation nuclear reactor using high temperature gas-cooled Pebble Bed technology.

CHINA is aiming to exponentially expand its nuclear power program:

A 1GW Pebble Bed Reactor needs 3,000 tonnes of graphite to start up and up to 1,000 tonnes to operate annually

Carbon atoms arranged in a honeycomb pattern can be arranged in sheets that are only one atom thick.

Research has shown that GRAPHENE has unique properties:

1000x the electrical current capacity of Copper wire 200x stronger than structural steel

10x better heat conductivity than Copper 20% flexibility without any damage

Graphene could make technology thinner, transparent, flexible, and more powerful.

EMERGING DISCIPLINES

- What's an example of an old (ancient, even) engineering field of study (or application)?
- What's an example of a nowestablished engineering discipline that did not exist 150 years ago?
- What's an example of a currently emerging field of engineering?

■ 🕏

LEARNERS TO EARNERS

ngineering occupations consistently appear on lists of best-paying careers. In the September 2020 *U.S. News and World Report* ranking of college majors with the highest starting salaries, engineering degrees claimed nine of the top 10 slots (the remaining one: computer science). The U.S. Department of Labor's 2019 list of highest-paying careers ranked engineering occupations in five of the first 50 positions.

From 2018 to 2019, median engineering salaries increased 2 percent on average, according to the Bureau of Labor Statistics. Petroleum engineers commanded the highest median salary of the disciplines, at \$137,720. Only architectural and engineering managers earned more, with a median salary of \$144,830. The lowest median annual salary was \$80,720 for agricultural engineers, the only category that did not beat the overall median salary for STEM professionals of \$86,980.

Engineering technician and technologist median salaries* also showed a slight increase from 2018 to 2019—1 percent on average. In 2019, the median annual salary for these positions ranged from \$45,010 for surveying and mapping technicians to \$66,020 for aerospace engineering technicians and technologists.

Source: U.S. Bureau of Labor Statistics (BLS), Occupational Employment Statistics.

*The data combining engineering technicians and technologists are reported as provided by the BLS.

XXXXX	xxxxx
Civil Engineers	0%
\$87,060	_USD
000000-000000 0	

XXXXX	XXXXX
Aerospace Engineering Technologists & Technicians	-1%
\$66,020	USD

XXXXX	XXXX
Environmental Technologists & Technicians	0%
\$50,620	USD
00000-00000	

XXXXX	xxxxx
Mining & Geological Englished Including Safety Engine	gineers, eers -1%
\$91,160	USD
00000-00000	000000

XXXXX	xxxxx
Agricultural Engineers	5%
\$80,720	USD
00000-00000	

xxxxx	xxxxx
Architectural & Engineering Managers	3%
\$144,830	USD
00000-00000	

xxxxx	XXXXX
All Other Drafters	2%
\$52,830	USD
00000-00000	

XXXXX	XXXXX
Electrical & Electronics Drafters	2%
\$61,530	USD
00000-00000	

xxxxx	xxxxx
Aerospace Engineers	1%
\$116,500	USD
00000-00000	

xxxxx	xxxxx
Materials Engineers	1%
\$93,360	USD
00000-00000	000000

XXXXX	XXXXX
Marine Engineers and Naval Architects	0%
\$92,400	USD
00000-00000	000000

XXXXX	XXXXX
All Other ETs & Technicians Except Drafters	s, -6%
\$59,620	USD
00000-00000	

xxxxx	xxxxx
Nuclear Engineers	5%
\$113,460	USD
000000-000000	

XXXXX	xxxxx
Biomedical Engineers	3%
\$91,410	USD
00000-00000	

XXXXX	XXXXX
All Other Engineers	2%
\$99,040	USD
00000-00000	

xxxxx	xxxxx
Electrical Engineers	2%
\$98,530	USD
000000-000000	

XXXXX	XXXXX
Electrical & Electron Technologists & Tech	ics nnicians 1%
\$65,260	USD

XXXXX	XXXXX
Mechanical Engineering Technologists & Technicians	1%
\$56,980	USD
	_

	xxxxx	XXXXX
L	Petroleum Engineers	0%
I	\$137,720	USD
	00000-00000	

• • • • • • • • • • • • • • • •

XXXXX	XXXXX
Chemical Engineers	4%
\$108,770	USD
00000-00000	000000

xxxxx	XXXXX
Electronics Engineers, Excludes Computers	3%
\$105,570	USD
000000-000000	

xxxxx	XXXXX
Civil Engineering Technologists & Techn	icians 2%
\$53,410	USD

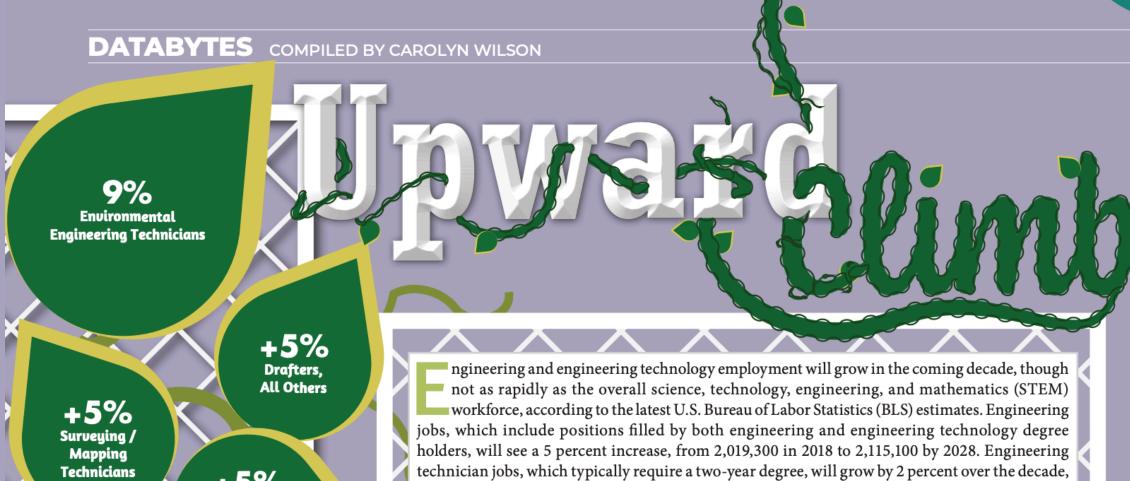
XXXXX	xxxxx
Industrial Engineerin Technologists & Tech	g inicians 2%
\$56,550	USD

XXXXX	XXXXX
Electro-Mechanical Technologists & Techni	cians 1%
\$58,350	USD
\$30,33U	บอบ

xxxxx	xxxxx
Mechanical Engineers	1%
\$88,430	USD

ı	XXXXX	XXXXX	
	Architectural & Civil Drafters	3%	
	\$56,340	USD	

xxxxx	xxxxx
Health and Safety Engi Except Mining Safety	neers, 3%
\$91,410	USD
00000-00000	


XXXXX	xxxxx	
Computer Hardware Engineers	2%	
\$117,220	USD	
000000-000000		

XXXXX	XXXXX
Mechanical Drafters	2%
\$57,060	USD
000000-000000	

xxxxx	XXXXX
Environmental Engineer	rs 1%
\$88,860	USD
00000-00000	

XXXXX	XXXXX
Surveying & Mapping Technicians	1%
\$45,010	USD

jobs, which include positions filled by both engineering and engineering technology degree holders, will see a 5 percent increase, from 2,019,300 in 2018 to 2,115,100 by 2028. Engineering technician jobs, which typically require a two-year degree, will grow by 2 percent over the decade, from 701,300 in 2018 to 712,800 in 2028. BLS does not have a job category for computer science, instead listing computational and mathematical occupations. But those two fields will be the main drivers of an overall 9 percent growth in STEM occupations, from 9,708,300 jobs in 2018 to 10,566,800 jobs in 2028. Computational jobs will increase by 12 percent and mathematical jobs by 26 percent during the decade to accommodate the growing application of machine learning and AI technology in industry.

Data source: United States Bureau of Labor Statistics Employment Projections released September 2019

Occupation (Engineering 2018 2028 Technicians/Technologists) Architectural and Civil Drafters 101,200 103,000 Electrical and Electronics Drafters 25,600 26,500 Mechanical Drafters 58,000 54,000 Drafters, All Others 15,000 15,700 Aerospace Engineering/ 10,500 11,000 Operations Technicians Civil Engineering Technicians 73,800 77,400 Electrical and Electronics 130,500 130,700 **Engineering Technicians** Electro-mechanical Technicians 14,100 14,000 Environmental Engineering Technicians 17,900 19,500 68,300 67,800 Industrial Engineering Technicians Mechanical Engineering Technicians 42,600 43,800 Engineering Technicians, 89,400 87,100 (Except Drafters) All Other Surveying and Mapping Technicians 56,800 59,900 \wedge

+4%

Electrical and

Electronics

Drafters

+5%

Engineering

+5%

Engineering/

Operations

Me Eng	3% echanical gineering chnicians	+3% Engineering Technicians (All Other)		+2% Architectura Civil Drafte	_
	+1% Industrial Engineering Technicians	Electro-Mechanica Technician	s		l
	KEY Engine Techno	ering		wth Change	
4	Engine	ering	Dec	line	

+9% Marine Engineers/ **Naval Architects**

2018

192,500

67,200

2,600

19,800

33,900

326,800

64,400

191,900

138,500

55,400

27,000

284,600

11,700

27,700

5,900

17,700

33,500

47,500

DESIGN BY TONI RIGOLOSI

312,900

+8%

Industrial

Engineers

2028

197,900

68,300

2,800

20,500

36,000

347,300

68,400

201,100

137,300

58,300

28,400

12,700

27,700

325,700

6,100

17,600

34,300

52,800

308,800

+11%

Engineering Teachers

(Postsecondary)

Occupation (Engineering)

Architectural/Engineering

Aerospace Engineers

Agricultural Engineers

Biomedical Engineers

Computer Hardware Engineers

Chemical Engineers

Electrical Engineers

Industrial Engineers

Marine Engineers/

Materials Engineers

Nuclear Engineers

(Postsecondary)

Mechanical Engineers

Petroleum Engineers

Engineering Teachers

Mining and Geo Engineers

Naval Architects

Electronics Engineers

Environmental Engineers

Health and Safety Engineers

Civil Engineers

(No Computers)

Managers

+8% Agricultural Engineers

+6% Computer Hardware Engineers

+6% **Civil Engineers**

+5% Environmental Engineers

+6%

Chemical Engineers

Biomedical Engineers

+4%

+5% Electrical Engineers

+4% Engineers

+5% lealth/Safety **Engineers**

+2%

Petroleum

Engineers

3%

+3% Architectural/ Engineering Managers

+2%

Electronics

Aerospace Engineers

Aaterials

-1%

Certified Professional ENGINEER (PE) SALARY & BENEFITS

Salary Ranges By Job

(Individuals Reporting: 10,390)

Civil Engineer — \$54,743 - \$100,740

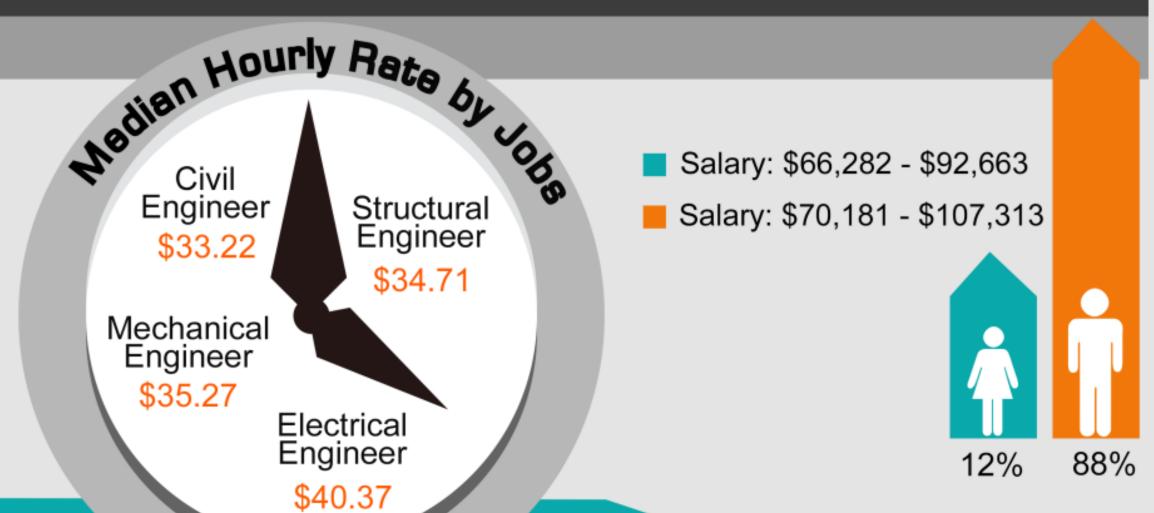
Electrical Engineer \$59,139 - \$116,738

Structural Engineer\$57,827 - \$99,542

Median Bonus By Jobs

(Individuals Reporting: 6,034)

Civil Engineer
\$1,962
Mechanical Engineer


\$2,942

Electrical Engineer \$3,847

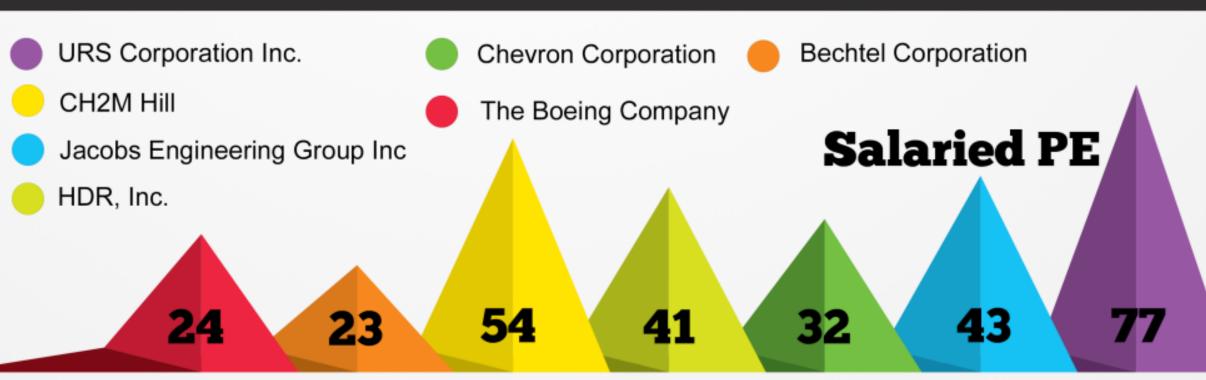
Structural Engineer \$2,250

(Individuals Reporting: 1,243)

SALARY RANGE OF COMPANIES EMPLOYING A PE

Shell Oil Company \$93,187 - \$244,679

General Electric Co (GE) \$89,306 - \$164,622 ExxonMobil Corporation \$91,089 - \$184,936


KBR \$88,388 - \$184,000

Bechtel Corporation \$81,174 - \$162,090 British Petroleum (BP) \$90,042 - \$214,470

U.S. Air Force(USAF) \$88,388 - \$184,000

(Individuals Reporting: 4,437)

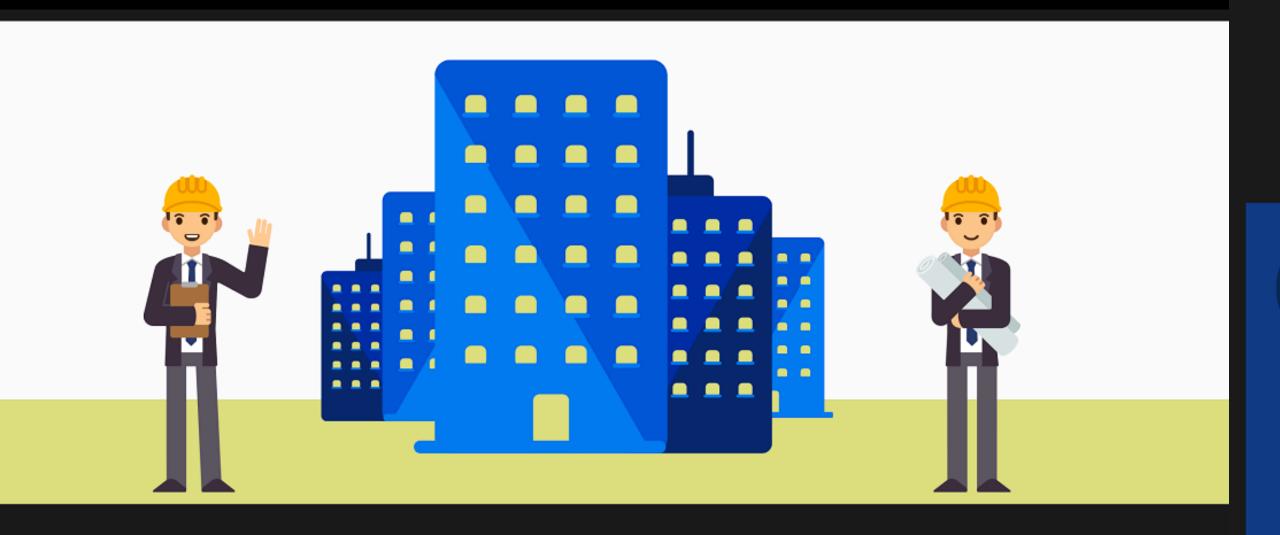
COMPANIES EMPLOYING PE

Source:http://www.payscale.com/research/US/Certification=Certified_Professional_Engineer_%28PE%29/Salary

Country: United States | Currency: USD | Updated: 22 Nov 2014

WHO LOOKS LIKE AN ENGINEER?

We ALL look like engineers



* #I LOOK LIKE AN ENGINEER

ENGINEERING SKILLS

Pick two: Take five minutes and write a few sentences about why employers want those particular skills.

5. Analytical Ability

Engineers are required to think analytically in order to fully define a problem and develop solutions suited to the problem.

6. Communication Skills

For an engineer, communication means the ability to not only understand technical complexities, but the ability to succinctly and effectively translate technical jargon into layman's terms without patronising others.

1. Team Player

Teamwork drives the successful completion of a project. No one can complete a project on their own.

They need others to contribute.

2. Continuous Learning

Technology and methodologies are constantly changing. Staying up to date with the latest developments puts you ahead of the field.

7. Logical Thinking

An engineer must know how the system works, what can go wrong and how to fix it. This requires an ability to think logically, and evaluate and understand each element that makes up the system.

8. Attention to Detail

Successful engineers pay meticulous attention to the smallest of details.

3. Creativity

It may sound cliché, but successful engineers have an innate ability to "think outside the box".

4. Problem Solving

Any project, no matter how big or small, will face problems. An engineer must be able to effectively address these as they arise.

9. Mathematical Ability

To be a successful engineer you must have outstanding math skills.

10. Leadership

Successful engineers also need well-developed "soft skills" so they can smoothly perform non-technical duties.

SOFT SKILLS ARE SKILLS, TOO

Personality Traits and Qualities of a Engineer Leader

An Engineering Skill Set Checklist

The professionals who excel in the industry typically display these seven engineering personality traits and qualities.

How many of these engineering skills and qualities apply to you?

Critical Thinkers

Instead of performing only your role in a project, you'll need to have a bigger-picture mentality and demonstrate a deeper understanding of the work that should be done.

> Can you harness your team for an integrated effort? Do you understand all components of the project?

Original

As a leader, you'll need to think beyond what's been done before. Is there a better way to do the work? What hasn't been tried yet?

Keep up with the new best practices in the field and adapt them to the opportunities and needs of your organization.

Driven

Stuck? Daunted? "Can't"? apply to you as an

You need to make it happen, whatever it is, and you can't let roadblocks get in the way of achieving your goals.

None of these words engineering executive

Receptive

How open are you to new ideas? You'll need to be ready to hear suggestions and thoughts from your team. You'll also need to be able to accept that your way won't always be the best way for everyone.

You may be the executive, but your team needs to have a say too.

Responsive

As an engineering executive, you'll be in charge of big projects and big decisions. You'll need to be able to think on your feet when problems arise or new information comes to light.

Think fast!

Team Oriented

You'll be a leader on a team working towards a common goal. How well do you work with others? Can you handle and direct strong personalities in the group? Do you know how to delegate tasks?

Courtesy and tact go a long way towards helping your team trust you.

Constant Learners

Keeping your technical skills strong is a mustyou'll need to work with new technologies and computer programs constantly and then teach your team to embrace the changes.

Maintaining your skills and a fresh knowledge of the field is especially important when managing multiple projects simultaneously!

Engineers are great at solving problems but often lack soft skills. Here are some useful tips needed to advance your career.

OMMUNICATION: It is the most important skill to pick up for a successful career. Practice being more social.

ESENTATION: Avoid jargon. Work on simplifying and crisply explaining concepts.

SELF-CONFIDENCE: It is all about showing what you're capable of doing. Do new things. Take on a new challenge.

UMILITY: Overconfidence could sink an engineer. Humility is important.

RESILIENCE: Don't give in when something negative happens. Be resilient and continue pursuing your goals.

MPATHY: Be in tune with a customer's needs and understand what they want.

BRAND IDENTITY: Figuring out a personal identity and creating a brand around it is important. Don't be just an engineer.

SEE MORE TIPS ON ADVANCING YOUR ENGINEERING CAREER: HTTP://BIT.LY/SOFTSKILLSASME

