
ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 02: BLINKING YOUR BOE-BOT DUE: 06 FEB 24

Lab 02: Blinking
Your BOE-Bot

When You’ve Never
Programmed Before

INTRODUCTION
What do your computer, tablet, and smartphone have in
common? Microprocessors! You’re pretty used to smart
devices, which can handle multiple tasks pretty much all at
the same time. But for your computer to be, well, a computer,
it needs more than a microprocessor. You need memory
(RAM), storage (hard drive), a graphics card—just to name a
few things! The microprocessor by itself is like a brain
without a body: smart, but not terribly capable.

What do your microwave, calculator, RC cars, and most
household appliances have in common? Microcontrollers!
The difference is that a microcontroller is specifically
designed to one thing (or just a few related things), without
needing a complex operating system.

When you think about robots, maybe
you think about the life-like
humanoid robots you see in movies—
which are fantastic, but mostly
fiction. Everyday robots usually don’t
resemble humans: form-follows-
function means that they will look
like what they are designed to do. A
robotic probe designed to explore the
surface of Mars really shouldn’t look
anything like a person, and neither
should an industrial robot designed
to paint auto body parts!

And you would never load your Mars probe with a program
to paint auto body parts. The microcontroller in your
calculator needs to perform tasks (like graphing or trig
functions) that the microcontroller in your washing machine
will never need, and even though you probably would never
call your calculator or laundry machines “robots,” they share
exactly the same kind of one-track-mind microcontroller
programming.

OBJECTIVES
The specific goals for this exercise are:

• Verifying that your BOE-Bots are properly constructed

• Writing a simple program to test the microcontroller
• Wiring a simple circuit to light an LED

• Programming loops to make the BOE-bot to blink

ASSEMBLY
The robots we’ll be using are
called BOE-Bots, and are
designed to give us a first look at
how to design a device to solve a
specific problem, and how to
implement that solution with
simple engineering and
programming.

Look carefully at the assembled bot. The microcontroller chip
is actually pretty small, but that’s where the processor is,
along with the memory.

To make the bot “do” anything, you need a power source.
There’s a battery pack mounted on the underside.

To make your bot “go” anywhere, you need wheels. Notice
that the wheels are attached to servo motors, which are
plugged in to sockets on the circuit board. The
microcontroller can tell the wheels to spin clockwise or
counterclockwise.

Notice also that you have extra ports, where you can attach
other devices. And a “breadboard” for electronic circuits
means that we can also add sensors.

Now do a fastener check! Replace any missing fasteners, and
make sure that everything is adequately tightened.

HELLO WORLD!
Once you have a completely
assembled bot, you need to
make sure the brain works!
Open the MacBS2 Basic
Stamp editor, then plug in
your bot using the USB cable.

This is pretty universally the
first program you write in whatever language you are
learning...how to display some output. Type the following (but
don’t type the line numbers on the left!):

01) 'Program: Hello World!
02) '{$STAMP BS2}
03) '{$PBASIC 2.5}
04) DEBUG "Hello world!", CR
05) END

This will compile cleanly and run, but what do the lines mean?

Line 01: Using a single quote to begin a line indicates a
comment. Comments are statements that the controller
reads, but doesn’t try to execute. This comment provides a
title for the program.

Lines 02 and 03: These control directives are necessary to every
program you write, and are always automatically inserted
whenever you open a new editor window. They are
identifying which BasicStamp microcontroller (BS2) is being
used, and which version of the PBasic language is being used to
communicate with it (2.5). Never edit or delete these lines!

Line 04: DEBUG displays a text string (enclosed in double
quotes) to the output terminal. CR goes to the next line.

Line 05: Get into the habit of always closing your programs
with an END statement, even if you think it’s obvious that the
program is at an end.

LIGHTS!
Displaying this “Hello world!” message is not all that useful,
but having the ability to display something is important!

If your bot isn’t connected to the computer, though, it can’t
display a screen message to get your attention. But a flashing
light? That would probably get your attention.

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 02: BLINKING YOUR BOE-BOT DUE: 06 FEB 24

We can use the onboard power and the breadboard to attach
some LED lights, and write a program to control when they
turn on and off. Once we know how to turn them on/off, we
can decide why we might want to flash the lights, and then
incorporate that into solving a bigger problem.

• Use the wiring diagram above to wire up two LEDs to one of
your bots. Note that you do not have to use the same LED
positions, but you do need to have a complete circuit to light
the bulbs. You can use a plain wire as a jumper to place one
of the LEDs at the far end of the breadboard.

• Select your resistors carefully! You must use the proper
resistor (notice the color band coding!).

• Notice how each bulb is wired to a separate P receptacle;
while you might not necessarily need to use P12 and P13 as
shown, as we wire up more attachments, we want to be sure
we aren’t “double dipping.”

You do not need to save your “Hello World!” program to
submit. This next set of programs, which will control the
LEDs, is the source code you should save and submit for
credit. Get in the habit of saving and re-using your last
program to complete your next one! Don’t try to strip the code
below out of the .pdf document, there will be invisible
formatting that makes the IDE editor choke! (Also, please
never manually enter the individual line numbers! The IDE
automatically numbers the lines for you.)

01) 'Program: Don’t Blink!
02) '{$STAMP BS2} 'Stamp directive
03) '{$PBASIC 2.5} 'Language directive
04) DEBUG "Don’t blink!", CR
05) HIGH 3. 'Power on to Pin 3
06) DEBUG "Pin 3 light on!"
07) PAUSE 500 'Wait half a sec
08) LOW 3 'Power off to Pin 3
09) DEBUG "Pin 3 light off!"
10) PAUSE 500 'Wait half a sec
11) HIGH 11 'Power on to Pin 11
12) DEBUG "Pin 11 light on!"
13) PAUSE 500 'Wait half a sec
14) LOW 11 'Power off to Pin 11
15) DEBUG "Pin 11 light off!"
16) END 'End of program

Notice that the comments don’t get displayed when you run
the program, only the DEBUG strings display to the screen!

LOOPS
Flashing the light one time? Maybe useful. But we can also
control the number of times we want a flash. Or we can
program a blink to just keep blinking until a user responds.

Let’s say we want a signal: a particular number of flashes of a
particular LED. We can write some code that will trigger only
one LED, and flash it exactly the number of times we decide.
Let’s look at an iteration, or loop structure:

01) 'Program: Blink! Blink! Blink!
02) '{$STAMP BS2} 'Stamp directive
03) '{$PBASIC 2.5} 'Language directive
04) index VAR Byte 'Memory for counter
05) blinks VAR Byte 'Memory for total
06) blinks = 3 'Number of loops
07) FOR index = 1 TO blinks
08) 'What needs repeating?
09) 'You figure out what lines go here!
10) NEXT 'Advances index by 1
11) END 'End of program

That seems like a lot of code…and a lot of comments!

Start to notice that we can keep recycling code! We can use
the same pieces, put together in different ways in different
programs. Having a lot of comments makes sure that you
always know what any particular piece of code supposed to
do, even if you wrote it ages ago!

This is also why you always want to save the programs you
write, especially once you know they work properly. It’s a
good practice to reuse/recycle rather than reinvent/rewrite
the same bits and pieces of code that get used often. In
programming, copy/paste should be the keystrokes that your
fingers fly to automatically!

TWO LOOPS!
Now add a second loop to your program. Edit the source code
so that the first loop blinks one LED (you choose how many
times), followed by a second loop which blinks the other LED.
Again, copy/paste should be your best friend!

SAVE AND SUBMIT
Be sure to save your source code frequently! Always save to
your own UCA Google drive. If you are using the UCA
computers, save the program on the Desktop—but always
save it in a second location. If it’s on your Google drive, you
won’t need to be in the lab to access the files!

• Use the proper file name: Whatever you have named your
program in the source code, you must use the correct
filename for submission. Name your two-loop program
lastnameLAB02, obviously using your own last name. It should
already/automatically have the .bs2 file extension. Never
submit word processor documents or .pdf files!

• Submit electronically: Your program is due no later than 6:00
PM on Tuesday, 06 February 2024. Everyone must submit via
the Blackboard Assignment.

• Complete your kit: If you don’t have two complete robots, or
you are missing any accessories, please round out your kit.
Make you’re your bots aren’t missing any fasteners! You can
obtain the parts you need from the accessory boxes on the
lab shelves. Spoiler alert: You will eventually need both robots
operating simultaneously, so you need to test your program
on both!

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 02: BLINKING YOUR BOE-BOT DUE: 06 FEB 24

GRADING RUBRIC
Your submitted source code will be graded using the assessment rubric below.

ASSESSMENT CRITERIA / VALUE POINTS EARNED

Lab 02 Program: Blink!
DUE: Tue 06 Feb 24

(filename: lastnameLAB02.bs2)

Compilation: Program compiles cleanly 8 points

Execution: Program executes correctly:
Two correctly programmed loops
Each blinker is controlled separately

12 points

Annotation: Program is sufficiently commented 10 points

	Lab 02: Blinking Your BOE-Bot
	Introduction
	Objectives
	Assembly
	Hello World!
	Lights!
	Loops
	Two Loops!
	Save and Submit
	Grading Rubric

