
ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 03: BOE-BOTS IN MOTION DUE: 13 FEB 24

Lab 03: BOE-
Bots in Motion
When You Need to Get
Where You Used to Be

INTRODUCTION
Flashing the LED is interesting, now that we know the how
and the why. But it doesn’t make the bot go, does it? Before
we get too far ahead of ourselves, we need to pause for a
moment and think a little about programming in general.

As exciting as it might be to just sit down and start frantically
typing line after line of code (…seriously, even I can’t believe
I just wrote that…), we really need to develop an
understanding of how to approach the problem-solving
process.

OBJECTIVES
The specific goals for this exercise are:

• Developing an algorithm for completing a specific task

• Learning simple P-Basic syntax and commands
• Becoming accustomed to the development environment

• Translating an algorithm into an executable program

CONSTRUCTING ALGORITHMS
An algorithm is your plan of attack for
solving a problem or completing a task.
There are multiple ways to construct
an algorithm, but not a single one of
them involves writing lines of
syntactically correct code (in whatever
language) on a piece of paper then re-
typing it on the computer.

Whether you prefer outlining, or
constructing a classical flowchart, the whole point is to create
the map of the solution. What steps need to be taken? In what
specific order? Are there multiple ways to achieve your goal?
Your algorithm should help you figure out the most efficient
way to solve your problem.

An algorithm should never be written in any specific coding
language; it should be in plain English. You should be able to
translate an algorithm into any programming language you
choose, and anyone should be able to read your algorithm and
understand it, even if they are not programmers.

CONTROL THE SERVOS, CONTROL THE WHEELS
Just like we sent a signal to the pin to light the LED, we can
send a signal (actually, complete the circuit and send a pulse
of energy from the battery) to the servo motors that drive the
wheels.

Notice that your servos are connected to the circuit board at
sockets 12 and 13. Which is left and which is right?

'Program: NBOTB

'{$STAMP BS2} 'Stamp directive

'{$PBASIC 2.5} 'Language directive

DEBUG "Forward pulse to left wheel"

PULSOUT 12, 650 'Left wheel forward

PAUSE 20 'Take a 20ms break

Did the left wheel roll forward (just a little bit)? If not, notice
which wheel did move, and whether it ticked forwards or
backwards. Go back and change the comments (not the actual
program!) to reflect what really happened.

Once you figure out which wheel is connected to which
socket, add code to move the other wheel:

DEBUG "Send forward pulse to right wheel"

PULSOUT 13, 650 'Right wheel forward

PAUSE 20. 'Take a 20ms break

That didn’t spin the right way, did it? To go forward, the right
wheel has to spin clockwise. But the left wheel has to spin
counterclockwise! (Check it.)

This is easy enough to adjust in the program. The PULSOUT
command needs two inputs: PIN, SPIN. You already know
which pin (12 or 13) controls which wheel. The SPIN argument
can rotate the servo in either direction, depending on the
value you use.

Change the 650 (clockwise) values to 850 (counter-clockwise)
values. What happens? Note which value ticks each wheel
forward and which one ticks backwards.

Now that you know the combinations, we can roll forwards,
backwards, and even turn corners! But one pulse to the servo
doesn’t really move you very far, does it?

CODE ONCE, RE-USE FOREVER
Before we go any further, let’s re-write what we just wrote,
but make it easier for us to modify in the future. Like we did
last week, we’re going to use PIN declarations for our wheel
servos, and constants for the rotation direction and speed:

leftWheel PIN 12 ' PIN 12 = left wheel servo

rightWheel PIN 13 ' PIN 13 = right wheel servo

CW CON 650 ' Clockwise spin = 650

CCW CON 850 ' Counterclockwise spin = 850

Now re-write the PULSOUTs using the appropriate labels:
PULSOUT 12, 650 'Left wheel forward

becomes
PULSOUT leftWheel, CW 'Left wheel forward

It’s a small thing, and might feel unnecessary—but when we
have to switch the bots back and forth from front-wheel to
rear-wheel drive, it’s easier to change two numbers at the top
of the program than hunt down every PULSOUT and edit it!

MAP THE SOLUTION
Let’s practice constructing an
algorithm while we think about
continuous motion. How would
we solve the problem of having
the bot navigate a closed course?
Think about it: you telling a
person to “take a walk around
the block” is probably a sufficient
statement for them to
understand what it is you expect
them to do. But it’s clearly nowhere near sufficient for the bot.

The program must be completely, perfectly literal. You would
not need to tell a person: “Take 200 steps forward. Stop. Turn
90° left. Stop. Take 200 steps forward. Stop.” And so on, until
you had navigated them back to their starting position. But
the bot needs every last detail made explicit.

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 03: BOE-BOTS IN MOTION DUE: 13 FEB 24

• Write the algorithm: For the bot to traverse a completely
closed path, ending back at the same location where they
started. Remember that you really, really need to be explicit
about every single action the bot must take.

• Measure the path: How far do you have to go on each leg
of the path? Note that it doesn’t matter if you measure the
path in inches or cm.

• Correlate the PULSOUT tick: How far does the bot travel
forward with one PULSOUT command? Hmmm....

PROGRAM YOUR ALGORITHM
• Roll forward: Use the same FOR-NEXT loop structure you

wrote for your previous program to make your bot roll
forward (don’t forget to declare your variables!). This is also
a great way to calibrate your PULSOUT! You may not be able
to accurately measure how far one pulse takes the bot, but
ten is a nice, round number. How far do ten PULSOUTs take
the bot?

• Roll backward: Create a second FOR-NEXT loop to roll the bot
backwards by the same distance you rolled forwards. Never
forget that copy/paste is your best friend.

• Turn right: Copy/paste one more loop, and modify the
PULSOUT commands so that your bot turns right. What count
will give you a nice 90° turn?

• Turn left: Fourth loop, now turn to the left. Adjust to make
it a 90° turn—it might not be the same as the right turn!

So, these four loops don’t really solve the around-the-block
problem at all, but they have just confirmed your ability to
navigate the bot. Return to your algorithm and notice how
easy it will be to modify your code to accomplish the task.

Modify your program so that your bot can drive itself around
the closed course. Notice that it’s a rectangle, so you will have
to carefully adjust and test your count value for each segment
of the track.

SAVE AND SUBMIT
Be sure to save your source code frequently! Always save to your own UCA Google drive. If you are using the UCA computers, save
the program on the Desktop—but always save it in a second location. If it’s on your Google drive, you won’t need to be in the lab to
access the files!

• Use the proper file name: Whatever you have named your program in the source code, you must use the correct filename for
submission. Name your two-loop program lastnameLAB03, obviously using your own last name. It should already/automatically have the
.bs2 file extension. Never submit word processor documents or .pdf files!

• Submit electronically: Your program is due at 6:00 PM on Tuesday, 13 February 2024. Submit via the Blackboard Assignment.
• Demonstrate your success: Once you have a program that successfully navigates the closed-loop course, you should be sure to

demonstrate it to me! If you are able to come to class a little early, or stay a few minutes late, you can do a live demonstration of your
bot’s performance. Alternatively, you may use your phone to record a video of your bot in action. Your video should make it clear that
it is you, using your assigned bot. Blackboard Assignments supports the submission of multiple video file formats, so you should be able
to upload your video with your source code. Please note that demonstrated success here represents a full 50% of the assessment!

GRADING RUBRIC
Your submitted source code and video will be graded using the assessment rubric below.

ASSESSMENT CRITERIA / VALUE POINTS EARNED

BOE-Bot Walkabout Video
Navigation: BOE-Bot successfully navigates the closed-
loop course; video submission (or live demo if possible)

15 points

Lab 03 Program: Loop!
DUE: Tue 13 Feb 24

(filename: lastnameLAB03.bs2)

Compilation: Program compiles cleanly 4 points

Execution: Program executes correctly (yields correct
results)

6 points

Annotation: Program is sufficiently commented 5 points

	Lab 03: BOE-Bots in Motion
	Introduction
	Objectives
	Constructing Algorithms
	Control the Servos, Control the Wheels
	Code Once, Re-Use Forever
	Map the Solution
	Program Your Algorithm
	Save and Submit
	Grading Rubric

