
ENGR 1301: INTRODUCTION TO ENGINEERING SPRING. 2024

LAB 06: COURSE CORRECTION DUE: 05 MAR 24

Lab 06:
Mid-Course
Correction

When Little Boe Learns To Back It Up

INTRODUCTION
The last time we saw our little friend BOE, he was lost in a
maze. Dead reckoning only gets you so far...like around the
block and (hopefully) right back home. The ability to change
course without having to be told what to do would absolutely
be an advantage.

Without a pair of eyes, how does little BOE know where the
walls are? Well, why do cats have whiskers? Why do insects
have antennae? Two words: Tactile navigation.

OBJECTIVES
The specific goals for this exercise are:

• Install a pair of sensory whiskers to your BOE-Bot
• Test the basic whisker function
• Develop an algorithm to allow tactile navigation
• Program a subroutine that course corrects
• Demonstrate your bot’s ability to navigate independently

INSTALL THE HARDWARE
Collect the necessary parts. The parts case has everything you
need, and plenty of them. However, you need to be extra-
careful selecting your resistors; you have to use the proper
resistances, so double-check the color bands!

• Two whisker wires
• Two 3-mm pin headers
• Two 220Ω resistors (red–red–brown)
• Two 10kΩ resistors (brown–black–orange)

Mount the whiskers to the front of the bot as shown:

If you need the spacers or the nylon washers (you probably
don’t), go ahead and grab them from the case.

Once you’ve got the whiskers attached, use the wiring
diagram below to complete the circuit. Notice that the pin
headers don’t have to go into any specific location, but you
want them far enough apart that the left whisker won’t hit the
right pin or vice-versa. Pay careful attention to which resistor
goes where, and where each end is attached!

For now, just ignore the piezo speaker (black disk) and the
black and green wires (we’ll get to that later).

DEVELOP SOME TEST CODE
First of all, notice that the right whisker touches the pin
header wired to P7, and the left whisker touches the pin wired
to P5. If the whisker touches the pin, it shorts the circuit. BOE’s
got a pretty tiny brain, but it can easily keep track of any
individual pin’s state: 1=on and 0=off. The default state for each
pin is on, until a whisker makes contact and shorts the circuit.
Here’s a short program to just check this out:

Program: Is This Thing On?

'{$STAMP BS2} 'Stamp directive

'{$PBASIC 2.5} 'Language directive

' Set up a table to record the whisker states

DEBUG "WHISKER STATES", CR,

 "Left Right", CR,

 "------ ------"

' Set up a loop to continuously check the

' state of each whisker

' BIN1 = display as binary (1 or 0)

' IN5 = the input register for P5

' IN7 = the input register for P7

DO

 DEBUG CRSRXY, 0, 3,

 "P5 = ", BIN1 IN5,

 " P7 = ", BIN1 IN7

 PAUSE 50

LOOP

This is not great programming (an infinite loop is a terrible
idea!), but all we need to do is make sure that the whiskers
are operating as advertised. You are not handing this program
in for credit, so you don’t need all the comments—but you do
need to run it.

CONSTRUCT THE ALGORITHM
Okay, now what? We want to program the BOE-Bot to run the
maze, but we want it to be able to change course if it hits a
wall. That’s our most basic algorithm.

The key word there is ‘if.’ We’re going to need another control
structure (we’ve already learned about using loops).
Basically, we need a branching structure: if <condition A is
true>, do <what needs to be done>. Otherwise <condition A is

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING. 2024

LAB 06: COURSE CORRECTION DUE: 05 MAR 24

false>, so do <a different thing>. Or maybe just continue what
you were already doing. Depends, doesn’t it?

Let’s imagine a hypothetical maze path for the robot. Let’s say
that the bot needs to start on the launch square, go forward,
turn left, go forward, turn right, forward, right, forward, left,
and then finally forward until it hits the landing square.

Here’s where it gets complicated. If the bot goes too far
forward on the first segment, it’ll hit a wall when it tries to
execute the first turn. What does the bot need to do? Back up?
Or does it need to undo the turn before it backs up? Will the
right response be the same every time the bot hits a wall?

Also, when we ran the maze, we gave the bot an explicit
number of steps to take on each segment. How often do we
need to check the whisker states? With every step? Every five
steps?

It might be a little too ambitious to try to run the entire maze.
So what can we do? Let’s not try complex navigation yet—let’s
just see if we can turn BOE loose and keep him from running
into stuff. Let’s map out what that would look like:

If both whiskers sense an obstacle:

 Back up and turn 180°

Else if right whisker only senses an obstacle:

 Back up and turn 90° left

Else if left whisker only senses an obstacle:

 Back up and turn 90° right

Else no whiskers are triggered:

 Roll forward

Loop back to the beginning and repeat

Notice the order in which we check the whiskers! Why is the
forward roll the last thing we do and not the first?

WRITE THE CODE
1. Add to the existing. You can continue to add to and modify

the dead-reckoning program you already have. Make a
copy and rename, preserving the original motion program.

2. Check your subroutines. You already have forward,
backward, left, and right subroutines. But are you going to
use them differently now? Notice that your turns need to
be precise (how many ticks make a 90° turn?). Also, how
far do you want to back up? Should you be rolling forward
more than one pulse at a time?

3. Construct the conditional. The main program relies on the
conditional IF-THEN structure in the algorithm above to
respond correctly to the whisker states. Luckily, the syntax
is pretty much exactly what you would expect it to be!
Here’s a snippet to get you started:

' If both whiskers detect an obstacle: state=0

' Bot should roll back and turn 180°

 IF (IN5=0) AND (IN7=0) THEN

 GOSUB Backward 'Bot rolls backward

 GOSUB Left '90° left turn

 GOSUB Left '90° left turn

' If only right whisker detects an obstacle:

' right state = 0 but left state = 1

' Bot should step back and turn 90° left

 ELSEIF (IN5=0) THEN

 GOSUB Backward 'Bot steps backward

 GOSUB Left. '90° left turn

' Add an ELSEIF for the case that only the

' left whisker detects an obstacle. Hint: what

' do you copy/paste?

' Then add one last ELSE for the case where

' neither whisker is triggered

' Also, replace this comment block with the

' appropriate annotations

 ENDIF 'Close conditional

Once you check for both whiskers being triggered, does it
matter if you check the right one before the left one?

4. Complete the loop. Use the same Do-Loop structure that
we used in the test code. It’s not the best structure—an
infinite loop with no way to get out is not optimum.
However, we don’t know anything about the path or
course, so we can’t pre-program a fixed number of
iterations (using a FOR-NEXT loop), and we have no way
(yet!) to communicate with the bot to tell it to stop!

5. Compile and test. When you have completed and
compiled the code, you should have a program that lets the
bot stagger around the room and bump into stuff without
getting stuck.

MANAGE YOUR EXPECTATIONS
Staggering around the room is…well…something. Technically,
it’s called a Drunkard’s Walk. But it’s nowhere near our goal
of running the maze with a self-correcting robot. Answer the
following questions in a separate document.

6. Is the existing maze suitable for our goal? Was it realistic
to expect the bot with whiskers to navigate that maze?

7. Are our skills up to it? Based on our previous programming
experience, were we too optimistic to expect that we could
achieve our self-driving goal?

8. Did we fail? Even though we did not reach our goal, did we
get closer to being able to achieve it? Is it a failure to
recognize that you need to take an intermediate step (or a
few) before you can expect success?

SAVE AND SUBMIT
Be sure to save your source code frequently! Always save to
your own UCA Google drive. If you are using the UCA
computers, save the program on the Desktop—but always
save it in a second location.

• Demonstrate your success: Let little BOE roam and shoot a
video! It does not need to be long or fancy, just demonstrate
that the bot can successfully avoid an obstacle. Blackboard
Assignments supports the submission of multiple video file
formats, so you should be able to upload your video with
your source code.

• Use the proper file names: Whatever you have named your
program in the source code, you must use the correct
filename for code submission. Name your program
lastnameLAB06, obviously using your own last name. It should
already/automatically have the .bs2 file extension. Never
submit word processor documents or .pdf files!

• Submit electronically: Your program, video, and questions are due no later than 6:00 PM on Tuesday, 05 March 2024. You must submit
via Blackboard.

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING. 2024

LAB 06: COURSE CORRECTION DUE: 05 MAR 24

GRADING RUBRIC
Your performance will be evaluated using the rubric below:

ASSESSMENT CRITERIA / VALUE POINTS EARNED

Program 06: Drunkard’s Walk!
DUE: Tue 05 Mar 24

(filename: lastnameLAB06.bs2)

Compilation: Program compiles cleanly 4 points

Annotation: Program is sufficiently commented 5 points

Execution: Program executes correctly (yields correct results) 5 points

Questions: Appropriate responses to Questions 6–9 9 points

Video: Proper operation is completely documented via video 7 points

	Lab 06: Mid-Course Correction
	Introduction
	Objectives
	Install The Hardware
	Develop Some Test Code
	Construct the Algorithm
	Write the Code
	Manage Your Expectations
	Save and Submit
	Grading Rubric

