
ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 07: REAL-TIME NAVIGATION DUE: 12 MAR 24

Lab 07: Real-
Time Navigation
When You Gain
Keyboard Control

INTRODUCTION
The last time we saw our little friend BOE, he was still lost in
a maze, and our ambition got ahead of our programming
skills. We discovered that it was easy to imagine what we
wanted to do, but complicated to program it. So now what?

Sometimes you need to pause. Do we really need the
autonomous course correction right now? Or can we work on
building more programming skills now and revisit that
problem later when we’re better equipped to solve it?

The simplest way to control your BOE-Bot will be with
keyboard commands. Back in the olden days, keystrokes were
everything... because there was no such thing as a mouse or a
joystick. The wheel had barely been invented, fire was just
becoming A Thing, and MTV actually played music videos all
day long...

OBJECTIVES
The specific goals for this exercise are:

• Develop an algorithm for keyboard-controlled navigation
• Implement fundamental branching and looping structures
• Program your BOE-Bot to move using keyboard commands
• Install and test a servo-driven putter on your BOE-Bot
• Write a subroutine to enable your bot to play golf

CONSTRUCT THE ALGORITHM
We want to program the
BOE-Bots to respond to
keyboard commands;
for example, keystroke
“w” (or maybe “i”)
results in the bot
moving forward, and “s”
(or perhaps “k”) moves
the bot backwards. We
also want keystrokes
for left and right turns.
Pick your own favorite
keystroke
combinations!

Without writing code, articulate exactly how the program
should function. For example:
User enters keystroke

Keystroke calls specific subroutine

Bot executes the subroutine

Repeat until user quits

The loop structure is obvious, but how does a keystroke call a
subroutine? Clearly it’s possible, because vending machines!
It’s exactly how a vending machine works: you press a button
to select a specific snack or drink. If you choose B17, you get
Cheetos, but choosing B18 gets you Doritos. For example:
If keystroke is w, then call forward

If keystroke is s, then call backward

Now what does that look like in our programming language?

WRITE THE CODE
1. Add to the existing. Continue to add to and modify the

dead-reckoning program you already have. Make a copy
and rename to preserve your original motion program.

2. Check your subroutines. These should already be written
and debugged, but if you have not done so already, you
should construct the simple subroutines for forward,
backward, left and right. The code fragment below should
remind you of the subroutine syntax. Notice that the FOR-
NEXT loop is no longer required and must be removed!

' --- --- Forward Motion --- ---

Forward:

 PULSOUT 12,650 'Advance right wheel

 PULSOUT 13,850 'Advance left wheel

 PAUSE 20 'Wait 20ms

RETURN

3. Call them with a keystroke. Decide which keystroke to use
for forward motion. In this example, I am using “w” to move
the bot forward and an “s” to move in reverse. Use the
following syntax to call the proper subroutine at the user’s
request:

'Program: Click and Go

'{$STAMP BS2} 'Stamp directive

'{$PBASIC 2.5} 'Language directive

X VAR WORD 'Allocate memory for keystroke

DO UNTIL (X = "q" OR X = "Q")

 DEBUGIN X 'Accept input keystroke

 DEBUG X 'Display to the user

 IF X = "w" OR X = "W" THEN

 GOSUB Forward

 ELSEIF X = "s" OR X = "S" THEN

 GOSUB Backward

 'Keep elseif-ing until you have all the

 'keystrokes to fully maneuver!

 ENDIF 'Close the conditional

LOOP 'Close the loop

END 'End the program

Notice that the user can type either lower- or uppercase
letters, and the program will respond correctly! Also notice
the loop structure: this will permit the user to keep driving
the bot until selecting to quit the program.

4. Complete the conditional. The IF-THEN-ELSEIF structure is a
conditional: nothing happens unless the user input
matches the set of keystrokes established as the conditions
for motion! Within the loop, add the conditions for the
right and left turns (for example, “a” to turn left and “d” to
call the subroutine for right turns).

5. Compile and test. When you have completed the code,
you should have keyboard control of your bot. It should
move in the proper direction with the proper keystroke.
Please note that if you press and hold a key (sending many
keystrokes to the bot very quickly), you might notice some
response rate hiccups. You can adjust your laptop’s
keyboard response rate, which can help. This is also partly
why we are echoing the keystroke back to the debug
terminal.

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 07: REAL-TIME NAVIGATION DUE: 12 MAR 24

PROGRAM THE PUTTER
Unfortunately, we do not
have enough attachments to
give every student a putter.
Extra robots are provided
with putters already
attached. These are located
on the shelves along the
south wall of CCCS 112.
Develop a subroutine to

operate the attachment, and modify your program to allow
the user to play a round of golf!

6. Create a new program. You should now have a working
navigation program. Do not overwrite or modify it! Use a
copy of the nav program and alter it as necessary.

7. Which way is forward? When you examine the putter, you
should notice that your bot, which has been programmed
for front-wheel drive, is now a rear-wheel drive vehicle.
Unless you want to putt backwards. You should be able to
quickly modify your program for rear-wheel drive (literally,
forwards is backwards, left is right, so swap the subroutine
names).

8. Control the putter. Add two more subroutines: one to
raise and the other to lower, the putter. The putter servo is
the same as the servos which drive the wheels, so using the
PULSOUT pin,spin is the proper command. To which pin did
you attach the putter servo? 14? 15?

9. Complete the conditional. Within the main program loop,
add the conditions for raising and lowering the putter. You
might, for example, use keystroke “u” to raise the putter.

HONK IF YOU LOVE ROBOTS!
Blinking our LEDs was fun and easy, and
it’s pretty obvious that having visual
signals is important. But what if you
can’t see the bot? An audio ping might
be helpful. And back-up beepers exist
for an obvious reason.

10. Wire the speaker. Use the diagram
on the right to add a piezospeaker
to your breadboard. In this example,
the diagram shows the speaker
wired to PIN 4. Go ahead and wire it
to any unused pin, it doesn’t have to
be PIN 4, but avoid using PINs 0–2.

11. Create the Subroutine. Start by
creating and naming a new subroutine and adding a
keystroke subroutine call to the main body of your
program.

12. Program the speaker. This is very straightforward. In fact,
a single command is all you need to emit a sound:
FREQOUT PIN, TIME, FREQUENCY.
The PIN is whichever one you wired the speaker to, the
TIME is in milliseconds, and the FREQUENCY is measured in
Hertz. For example:

'A 2 second tone at 3000Hz = 3kHz:
FREQOUT 4, 2000, 3000.
Human hearing is sensitive from about 20Hz to 20,000Hz.
Choose your favorite frequency from the table below.

13. Play a Round of Golf. The putting green has replaced the
maze, and you should demonstrate the success of your
program in the usual way: either film a video clip of your
bot putting a hole-in-one, or a live demonstration of the
same.

SAVE AND SUBMIT
Be sure to save your source code frequently! Always save to
your own UCA Google drive. If you are using the UCA
computers, save the program on the Desktop—but always
save it in a second location. If it’s on your Google drive, you
won’t need to be in the lab to access the files!

• Demonstrate your success: Practice navigating and putting,
then use your phone to document your skills with a short
video. You should be sure that your video shows clearly who
is controlling the Bot, and that the Bot operates properly
(forward, backward, left and right, putting). It does not need
to be long or fancy, the video simply needs to demonstrate
that you have achieved the objectives of the exercise.
Blackboard Assignments supports the submission of
multiple video file formats, so you should be able to upload
your video with your source code.

• Use the proper file name: Whatever you have named your
program in the source code, you must use the correct
filename for submission. Name your putter program
lastnameLAB07, obviously using your own last name. It
should already/automatically have the .bs2 file extension.
Never submit word processor documents or .pdf files!

• Submit electronically: All programs are due no later than
6:00 PM on Tuesday, 12 March 2024. You must submit via
Blackboard.

ENGR 1301: INTRODUCTION TO ENGINEERING SPRING 2024

LAB 07: REAL-TIME NAVIGATION DUE: 12 MAR 24

GRADING RUBRIC
Your performance will be evaluated using the rubric below:

ASSESSMENT CRITERIA / VALUE POINTS EARNED

Lab 07 Program: Putt!
DUE: Tue 12 Mar 24

(filename: lastnameLAB07.bs2)

Compilation: Program compiles cleanly 5 points

Annotation: Program is sufficiently commented 5 points

Execution: Program executes correctly (yields correct results) 6 points

Beeper: Piezospeaker is attached / controlled with a keystroke 7 points

Video: Proper operation is completely documented via video 7 points

	Lab 07: Real-Time Navigation
	Introduction
	Objectives
	Construct the Algorithm
	Write the Code
	Program the Putter
	Honk If You Love Robots!
	Save and Submit
	Grading Rubric

