Chapter 00: Exploring the Heavens

0.1: The Obvious View

Our Place in Space

- Astronomy: study of the universe
- Earth does not occupy a central or special place

Constellations In The Sky

- About 3000 stars visible to naked eye from any random location on earth
- Constellation: pattern identified, "picture" formed by group of stars
- No astronomical significance because stars in specific constellation have no relationship to each other
- Cultural significance: important way for nonliterate societies to preserve and pass on important information

The Celestial Sphere

- Method for locating objects in the sky
- Ignores the fact that objects are at different distances from the earth
- Project an invisible sphere out from the earth
- NCP: North Celestial Pole = projection of earth's North pole into the sky
- SCP: South Celestial Pole = projection of Earth's South pole into sky
- CE: Celestial Equator = projection of Earth's equator into the sky
- Stars appear fixed with respect to each other, but entire celestial sphere "spins" as Earth turns on its axis

Celestial Coordinates

\downarrow To precisely locate an object, two coordinates required

- On Earth: latitude measures degrees of angle from 0° to 90° north or south of equator
- In space: declination measured in degrees from 0° to 90° north $(+)$ or south $(-)$ of celestial equator
- On Earth: longitude measured in degrees around the equator
\downarrow Zero chosen arbitrarily: 0° longitude $=$ Royal Observatory, Greenwich, England
- Measure from 0° to 180° East (towards Asia) or 0° to 180° West (towards N America)
- In space: right ascension measured in hours, minutes, seconds around the celestial equator
- Zero chosen arbitrarily: 0h RA = where sun crosses the celestial equator on vernal equinox (HUH?!?!?)
- Measure from 0 h to 24 h RA around CE in the same direction as the earth spins

0.2: Earth's Orbital Motion

Day-to-Day Changes

- Solar day: Earth completes one rotation with respect to the sun $=24$ hours
- Start timing when sun crosses S meridian (noon), stop timing when sun crosses meridian again tomorrow
- Sidereal day: Earth completes one rotation with respect to distant star $=23 \mathrm{~h} 56 \mathrm{~m}$
- Start timing when star crosses S meridian, stop timing when same star crosses meridian again tomorrow

Seasonal Changes

- Earth's axis is tilted
- Draw an enormous flat plane through the equator of the sun, and extend it all the way through the solar system
\star This plane does not cut the Earth in half at its equator
\rightarrow Axis tilt $=23.5^{\circ}$

Ecliptic

- Apparent path of the sun across the sky (really the Earth in motion, not the sun)
- Ecliptic is tilted b/c Earth's axis is tilted

Seasons

- Tilt of axis creates changing seasons
- Distance from sun does not create seasonal changes
- Earth is marginally closer to sun in Dec than Jun, but Dec is not the hottest month in the N hemisphere!

Summer Solstice

\downarrow Usually 06/21 (may fall \pm a calendar day)

- Longest day of the year (N hemisphere) because sun has maximum declination $\left(+23.5^{\circ}\right)$
- N hemisphere is tipped toward sun, more direct daylight makes the season summer

Winter Solstice

- Usually 12/21 (may fall \pm a calendar day)
- Shortest day of the year (N hemisphere) because sun has minimum declination (-23.5 $)$
$\downarrow \quad \mathrm{N}$ hemisphere is tipped away from sun, less direct daylight makes season winter

Equinoxes

- Vernal (Spring) Equinox: 03/21 (may fall \pm a calendar day)
- Autumnal Equinox: 09/21 (may fall \pm a calendar day)
\star Equal length day \& night because sun crosses CE $\left(\operatorname{dec}=0^{\circ}\right)$

Long-Term Changes

\downarrow Earth's axis wobbles slightly as it spins

- Today, NCP points almost perfectly at Polaris
- Wobble means that Polaris was not always the Pole Star, and will not be forever

0.3: The Motion of the Moon

Lunar Phases

- Understanding the phases helps us really start to get to grips with the layout of the solar system
- New moon: moon located in between Earth and sun (angle is 0°)
- 1 st quarter: moon makes a 90° angle (If you are the Earth, stick your right arm straight out and make a fist: your fist is the sun. Stick your left arm straight out to your side, so your arms make a 90° angle. Your left fist is the moon.)
- Full moon: moon is 180° away from sun in sky (If you are the Earth, the sun is directly in front of you, then the moon would be directly behind you.)
- 3rd quarter: moon makes 90° angle (switch hands, and let your left fist be the sun sticking straight out in front. Make a 90° with your right arm, and your right fist is the moon)

Lunar Month

- Sidereal Month: 27.3 days for the moon to complete one full rotation with respect to distant star
- Synodic Month: 29.5 days for moon to complete one full cycle of phases, or a complete rotation with respect to the sun (as seen from the earth)

Solar Eclipse

\downarrow Sun is eclipsed by the moon: moon passes in between Earth and sun

- Can only happen when phase of moon is new
- Does not happen every month because moon's orbit is tiled with respect to ecliptic
- Annular eclipse: moon is farthest from Earth, making it appear slightly smaller (so it does not completely cover solar disk)

Lunar Eclipse

\uparrow Shadow of the Earth eclipses the moon: Earth passes in between sun and moon

- Can only happen when moon is full
\downarrow More frequent occurrence than solar eclipse
- Partial eclipses not uncommon

0.4: The Measurement of Distance

Triangulation

- Measure distance to objects that are too far or inconvenient to be measured directly
- Requires some geometry and trigonometry
- Observe the same object from two different vantage points, compare
- This works for stationary objects on Earth, but can also be used to locate planets

Parallax

- Apparent shift in the position of an object in the foreground with respect to the background
- Result of changing point of observation, not the motion of the actual object
- For close object, large parallax observed with relatively small baseline shift
- The farther an object, smaller the parallax: increase baseline to increase parallax

0.5: Scientific Theory and Scientific Method

It's Only a Theory...

- A scientific theory has been repeatedly tested, and never found to be false (not once, not even a little bit)
- If something is referred to by scientists as a theory, it is widely accepted as the best framework for explaining something
- A theory must be able to explain what has been observed and predict what should happen as a consequence
- Scientists accept that, if new facts or experiments reveal a flaw, the theory must be modified or discarded

Scientific Method

- Process by which science gets done
- The whole point is, it's never actually done

Sizing Up Planet Earth

- Eratosthenes accurately measured Earth's circumference and diameter in about 200BC
- All you need are two sticks and scratch paper
- More to the point: He apparently took it for granted that the Earth was a sphere...in 200BC

