Chapter 05: Earth and Its Moon

5.1: Earth and Moon in Bulk

Physical Properties

\uparrow Moon is smaller

- Moon is less massive
- Moon has lower surface gravity
- Moon has lower escape speed
- Moon is $384,000 \mathrm{~km}$ from Earth

Overall Structure $=$ Differentiated Layers

- Earth and Moon: Core, mantle, crust
- Earth: Hydrosphere (water), atmosphere (air)

5.2: The Tides

Gravitational Deformation

Average Force

- $\mathrm{F}=\mathrm{G}(\mathrm{mM}) / \mathrm{r}^{2}$
- r : Measure from center of m to center of M
\downarrow This F is average and controls the orbital motion

Differential Force

- Force depends on distance: Closer $=$ more force
\downarrow Inverse square: Small change in distance = big change in force
- Pull on E due to M at near side of $\mathrm{E}=$ bigger F
\downarrow Pull on E due to M at far side of $\mathrm{E}=$ smaller F
Tidal Force
- Line of action of force: center to center
- Stretch (literally) along line of action
- Earth: Pull on water = tides
- Moon: No water, so no ocean tides, but tidal force still exists
Tidal Bulge
\downarrow Easy to see "bulge" on E because of water
\downarrow Not easy to see bulge on M, but shape gets stretched

High Tide

\star Obvious high tide: Where E directly faces $\left(0^{\circ}\right) \mathrm{M}$, force is greatest (water pulled the hardest)

- Less obvious high tide: Point on E directly opposite (180 $)$ from M

Low Tide

- Points on E at 90° and 270° relative to M
\uparrow Water gets pulled toward 0° and 180°, had to come from somewhere

Highest High Tides

- Spring tides
- Moon = new or full
- Alignment means that pull due to sun reinforces pull due to M

Lowest High Tides

- Neap tides
- Moon $=1$ st or 3 rd quarter
$\rightarrow \mathrm{M}$ at 90° relative to sun

Tidal Locking

Moon Slows Earth

- Earth spins faster than moon orbits
- Tidal bulge gets slightly ahead of moon
- Force on bulge (not bulk) pulls "backwards," slows down E
\downarrow Rotation slows by 2×10^{-3} sec every 100 years

Earth Locks Moon

\downarrow Synchronous orbit: Same time to rotate and revolve

- M spins once on axis = 27.3 days
- M orbits E once $=27.3$ days
- M keeps same face towards E all the time

5.3: ATMOSPHERES

Why Air Sticks Around

* Short answer: gravity
* Slightly longer answer: gravity + temperature
* Temperature = average kinetic energy per molecule
* Earth: average speed of average air molecule $=0.6 \mathrm{~km} / \mathrm{s}$, but escape velocity is $11.2 \mathrm{~km} / \mathrm{s}$

Earth's Atmosphere

- Mostly nitrogen (78\%) and oxygen (21%)
- Oxygen is result of biological processes!! Not typical
- Pressure and density decrease with increasing altitude
- Relationship is not linear! 50% within 5 km of sea level

Earths's Growing Ozone Hole

- Ozone $=\mathrm{O}_{3}$ molecule (most atmospheric oxygen $=\mathrm{O}_{2}$)
- Ozone molecules absorb UV (and some higher frequencies)
- Once you break an ozone molecule, it's hard to replace it
- Man-made CFCs are awesome at breaking O_{3} molecules
- This is only a problem if you are a living organism which cannot withstand prolonged UV exposure

The Greenhouse Effect

- This is actually necessary for life as we know it
- If no greenhouse effect, Earth's equilibrium temperature would be about $-23^{\circ} \mathrm{C}$. Minus.
$\downarrow \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ vapor are good at trapping incoming solar energy-just enough to bring the temp up to about $+20^{\circ} \mathrm{C}$
- Small changes in CO_{2} levels have large net effect

Lunar Air?

\downarrow Nope

- Low gravity = slow escape velocity
- No permanent atmosphere, but occasional sputtering of atoms and molecules off of surface
- Huge amounts of water locked as ice below the poles

5.4: Internal Structure of Earth and Moon

Seismology

\uparrow Earthquakes!
\downarrow P-waves: Primary (longitudinal). Can travel through solids and fluids both
\uparrow S-waves: Shear (transverse). Can only travel through solids
\downarrow Seismology: Study of seismic waves. Seismograph detects waves, can determine origin of wave, wave speed, etc.

Modeling Earth's Interior

\downarrow Watch both S- and P-waves: trace back to epicenter/source

- Look at wave speed: Changes with density
\downarrow S-waves reflect: Do not transmit through liquid outer core

Crust, Mantle Core

\downarrow Synthesize seismic data to determine layered structure

- Crust: Rigid, average thickness about 15 km (very thin)
- Mantle: About 80% of planet volume
- Outer Core: Radius about 3500 km . Liquid, high density
- Inner Core: Radius about 1300 km. Solid! Highest temperature and highest density, predominantly Fe and Ni

Differentiation

- Not precisely the same as solar system differentiation
- Layered structure
- Density decreases with increasing distance from center
- Approximately $12,000 \mathrm{~kg} / \mathrm{m}^{3}$ at core decreases to about $3300 \mathrm{~kg} / \mathrm{m}^{3}$ at surface (water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)
\downarrow Temperature decreases with increasing distance from center
- Approximately 5000 K at center, 300 K on surface
- These relationships are not linear

The Lunar Interior

Lower average density: $3300 \mathrm{~kg} / \mathrm{m}^{3}$ (no dense Fe-Ni core)

- Moonquakes! Not exactly same as on Earth, much less energy released--but still useful to map internal structure
- Solid inner core about 240 km radius
\star Liquid outer core about 90 km thick
- Semi-solid mantle about 400 km thick, covered by solid mantle about 900 km thick
- Asymmetric crust: 60 km thick on near side, reaching 150 km thick on far side (short answer: gravity)

5.5: Surface Activity on the earth

Continental Drift

\downarrow Earth's crust not one solid piece: composed of large slabs
\downarrow Who knew? This is relatively new science (about 50 years old)

- Ring of Fire: Notice the correlation between volcanoes and the edges of the plates
- Himalayas are growing as Indian plate drives into Eurasian plate
- Atlantic Ocean getting wider as N and S American plates pulls away from African plate

What Drives the Plates?

- Solid plates formed by quick cooling/shrinking of crust
- Mantle below is still fluid: fluids flow
- Heat from core creates convection in mantle
\uparrow Plates are literally surfing the mantle, just really slowly

Plate Tectonics on the Moon
 - Nope
 - No plates (thick crust)
 - Not enough mushy mantle

5.6: The Surface of the Moon

Large-Scale Features

Maria

- Latin for sea, because Galileo thought they might actually be water
- Darker, flatter, smoother regions
- Much less cratered

Highlands

- Galileo called them terrae, because he thought they were probably land
- Greater elevation than maria
- Lighter color, much rougher terrain, much more cratering

The Difference Between Them

- Maria and highlands have different composition: we know because we have been there
- Maria = basalt: Darker color, higher density
- Highlands = aluminum salts and silicates = lighter color, lower density

Cratering

The Obvious

- Stuff hits the moon, leaves a crater
\downarrow Craters are all over the moon: Lots of stuff hit the moon

The Less Obvious

\downarrow Maria have fewer craters: They are geologically younger

- Maria are pretty circular: They are impact craters filled with lunar lava (not completely known why more maria on near side than far side)
- Craters on top of craters: Tells you about cratering rates
- High rate of cratering, drops off significantly about 3.9 billion years ago

Lunar Erosion

- No air or water to erode surface, so features are very old
- Micrometeoroids cause most lunar erosion
- Very few impacts larger than about 1 cm recently/ongoing forming

5.7: Magnetospheres

Earth's Magnetosphere

\uparrow Magnetic field: Liquid outer core (Fe, Ni) rotating rapidly

- Magnetic dynamo: This is not a refrigerator magnet
\uparrow Field lines created continuously: Magnetic N pole is currently not quite aligned with geographic/rotational N pole
- Charged particles (p^{+}and e^{-}from the sun) deflected by magnetic field, get trapped
- Van Allen Belts: e^{-}form outer "belt" (toroid), p^{+}end up in inner belt
- Aurora $=$ charged particles collide with atmospheric molecules, absorption/emission (see Ch 02!)
Lunar Magnetism
\downarrow Nope

5.8: History of the Earth-Moon System

Formation of the Moon

Capture

- Hypothesis: Moon formed somewhere/somewhen else
- Captured by Earth's gravity
- Not likely

Condensation (Co-Formation)
\uparrow Hypothesis: Both bodies formed at the same time, in the same place

- Differences in density and composition argue against this
\downarrow No other examples of this process in the solar system

Catastrophic Impact

\downarrow Hypothesis: A planetoid about the size of Mars formed independently of Earth
\downarrow Catastrophic collision broke up the planetoid, almost killed the Earth

- Gravity wins in the end: Most matter ends up back on earth, some accretes into the moon

Why We Like This One Best

\downarrow Computer modeling demonstrates plausibility
\downarrow Collisions are obvious and frequent in early solar system

- Explains why moon has different structure, smaller core:
- They started out pretty much the same
- The smaller thing gets obliterated
- Some of its mass ends up on Earth, and it would be the heavier stuff - Moon condenses out of mostly lighter material

Lunar Evolution

Moon

\uparrow At least partially solid by 4.4 billion years ago: Rocks are evidence

- Smaller, less dense: Faster cooling
- Volcanic activity: Tidal force due to Earth causes more activity on near side (large maria)
- Few volcanic flows on far side (no maria)
\downarrow No current volcanic activity

Earth

\downarrow Larger, denser, more internal heat

- Thin crust, hot mantle, molten iron core (solid at very center)
- More geologically active: Plate tectonics, volcanism

