10.1: The Solar Neighborhood

Stellar Parallax

\downarrow Apparent motion of an object against a background of more distance objects

- Farther objects, smaller parallax
\downarrow Relate distance to observed parallax: distance $=1 /$ parallax
- Measure distance in parsec ($1 \mathrm{pc}=206265 \mathrm{AU}=3.3$ light years), measure parallax in arcsec

Our Nearest Neighbors

- Proxima Centauri $=1.3 \mathrm{pc}=4.3 \mathrm{ly}\left(\right.$ parallax $\left.=0.77{ }^{\prime \prime}\right)$
- Barnard's Star $=1.8 \mathrm{pc}=6.0$ ly (parallax $=0.55^{\prime \prime}$)
- Closest stars have parallax less than 1 arc sec
- Need adaptive optics or space telescopes to really resolve parallax for more distant objects

Stellar Motion

\downarrow Apparent motion: Parallax results because Earth is moving, not because star is moving

- Radial velocity: Real motion of star towards or away from Earth (measure using Doppler shift)
- Transverse velocity: Real motion of star perpendicular to line of sight

Proper Motion

\downarrow Record apparent position of star, then return after a significant amount of time (years, not days) and observe again

- Change in apparent position can be broken into pieces: parallax and transverse velocity
- Once you take the parallax out, what remains is real: Proper motion

10.2: Luminosity and Apparent Brightness

- If it looks bright, maybe it really is bright
- Or maybe it's not really all that bright, it's just close
\downarrow Have to distinguish actual luminosity (how much energy the star generates) from apparent brightness

Another Inverse Square Law

\star Farther = dimmer, closer = brighter
\star The relationship is not linear

- Inverse square: double the distance, only one fourth the brightness
\downarrow Apparent brightness \propto (luminosity/distance ${ }^{2}$)
\downarrow To know how much energy a star really generates, you have to know both how bright it looks and how far away it is

The Magnitude Scale

- Origin in ancient Greece: brightest stars called first magnitude or first order, dimmer stars have second (or third, or fourth) order magnitude
- Smaller number indicates a brighter appearance, larger number indicates dimmer appearance
- Have to distinguish between the appearance and the actual energy!!

Apparent Magnitude

\downarrow How bright does a star appear as viewed from Earth?

- Scale is not linear!
- Smaller number is brighter, but magnitude 1 is not twice as bright as magnitude 2
- Scale is logarithmic, but not even log base 10
\downarrow Could we make this any harder? Yes! There are negative magnitudes as well!
- Every five magnitudes is a factor of 100 in brightness: Magnitude 1 is 100 times brighter than magnitude 6
- Brightest object observable: Sun $=-26.8$
\downarrow Dimmest object observable: magnitude $\approx+30$ (HST limit)

Absolute Magnitude

- Take the stars and line them all up at a distance of 10 pc from the Earth (this is an imaginary experiment)
- What appears brighter will actually be a more luminous star: this is an intrinsic property
- Now use pretty much the same brightness scale: smaller number $=$ brighter, scale is logarithmic
- Typical to see side-by-side comparison of luminosity and absolute magnitude

10.3: Stellar Temperatures

Golor and The Blackbody Curve

- We already know that color and temperature correlate (Stefan's Law, Wien's Law)
- Blackbody curves are very well behaved: easy to extrapolate
- This means you do not need a whole mess of measurements to figure out the shape of the curve
- B: Measure intensity using a blue filter (only allows narrow range of wavelengths)
- V: Measure intensity using a visible filter (narrow range of wavelengths in the green-yellow)
- These two measurements are enough to reconstruct an entire blackbody curve

Stellar Spectra

\star The same composition can yield different spectra at different temperatures

- Hot stars mean more ionization, which shows up in the spectra
- Cooler stars allow formation of molecules, which shows up differently in the spectra
- Spectra give very accurate temperature profiles

Spectral Classification

- What do you do with thousands and thousands of stellar spectra, but no workable atomic theory?
\downarrow Pattern recognition: sort stars by line strengths, and hope someday it means something
\downarrow Historically, astronomers used letters A through P

Oh, Be A Fine Girl, Kiss Me

- If you think of a better mnemonic, please share it with the world
- This is what is left of the previous classifications: O B A F G K M
- Temperature decreases in order from O to M : type O are the hottest, type M are the coolest stars
\downarrow Subtypes: Give the letter a numeric appendage, and B0 is hotter than B1 is hotter than B2 \cdots is hotter than B9

10.4: Stellar Sizes

Direct and Indirect Measurement

- Direct measurement of stellar radii is difficult: too far, too small
- A few very large stars are close enough to be measured directly
- Indirect measurement: Infer size based on luminosity and temperature
\downarrow Luminosity depends directly on both temperature (Stefan's law) and surface area (area \propto radius ${ }^{2}$)
$\rightarrow \mathrm{R}=\left(\mathrm{L}_{\odot}\right) / \mathrm{T}^{2}$, where R , L , and T are in solar units $\left(\mathrm{R}_{\odot}=1\right.$, $\mathrm{L}_{\odot}=1$ and $\left.\mathrm{T}_{\odot}=5800 \mathrm{~K}\right)$

Giants and Dwarfs

\uparrow Huge and cool: Aldebaran (4000K = cool, but R = 40R \odot)

- Tiny and fiery: Sirius B $\left(24,000 \mathrm{~K}\right.$, and $\left.\mathrm{R}=0.01 \mathrm{R}_{\odot}\right)$
- Dwarf: $\mathrm{R} \leq \mathrm{R}_{\odot}$
\downarrow Giant: $10 \mathrm{R}_{\odot}<\mathrm{R}<100 \mathrm{R}_{\odot}$
\downarrow Supergiants: $\mathrm{R}>100 \mathrm{R}_{\odot}$

10.5: The Hertzsprung-Russell Diagram

H-R Diagram Axes

- Plot temperature on the x-axis
- Notice that T gets hotter as you move to the right!
\downarrow Plot luminosity on the y-axis
- Notice that units are stellar: $\mathrm{L}_{\odot}=1$

The Main Sequence

\downarrow When you start putting stars on the graph, a pattern emerges

- Most stars fall into a fairly narrow band on the graph: The main sequence
- This band is not perfectly linear
\star There are plenty of exceptions to the rule, and they mean something

Constant Radius Diagonals

\downarrow Use relationship between luminosity, temperature and radius

- Diagonals $=$ lines of constant radius run from top left to bottom right

The White Dwarf and Red Giant Regions

\downarrow On the main sequence: Blue giants and supergiants at top left (hot, luminous, large)
\star On the main sequence: Red dwarfs at bottom right (cool, dim, small)
\star White Dwarfs: Off the main sequence at bottom left (hot but dim)

- Red Giants: Off the main sequence (like a tree branch) on the top right of curve (very bright, but not very hot)
How Many of Each Type?
\downarrow You can see the brightest stars at much farther distances
- There are dimmer stars out there that cannot be mapped because they are too dim
- Recognize which types are over-represented because they are so bright, and which types are under-represented
- If our neighborhood is typical, 90% main sequence, 9% white dwarf, 1% red giant

10.6: Extending the Cosmic Distance Scale

Spectroscopic Parallax

- Actually has nothing to do with stellar parallax
* Work the distance problem backwards: Apparent brightness \propto (luminosity/distance ${ }^{2}$)
* Observe the apparent brightness, determine the luminosity by spectral type
- Solve for the distance, which means now you have another way to find distance without measuring apparent motion

Luminosity Class

- Start with O B A F G K M: Coarse temperature scale
* Add the number 0-9: Refine the temperature classification
- Add a luminosity class: Distinguish between main sequence stars (V) and non-main sequence stars (I through IV)
- How do you determine luminosity class? Line width gives you atmospheric density, density gives you distinction between giant, main sequence, and dwarf stars

10.7: Stellar Masses

- We already know how to use orbits (Kepler and Newton) to figure out the mass of the sun (like we did for Jupiter)
- Same technique can be applied to other stars: if you have a planet orbiting a star, or two stars orbiting each other

Binary Stars

\downarrow It appears that most stars come in pairs
\downarrow Binary $=$ two, but there may be multiple stars in a system

Types of Binaries

\uparrow Visual: Stars orbit each other, but they are far enough apart to be resolved individually
\downarrow Spectroscopic: Stars are too far/too close to be resolved independently; you know there is more than one because of the Doppler shift in the spectra

- Double-Line: Spectra from each star can be resolved separately
- Single Line: Cannot resolve separate spectra because one star is too faint; brighter spectrum reveals Doppler wobble
- Eclipsing: One star passes in front of the other; rare because the plane of the orbit has to edge-on as seen from Earth

Mass Determination

- Getting the period of orbit is not that hard
- It's the actual separation that's more difficult to determine
\downarrow Mass function: Sometimes the best you can do is determine a limit, or relationship; individual masses cannot be determined

Mass and Other Stellar Properties

- Once you start to mass some stars accurately, it gets easier to extrapolate
- Correlate temperatures, luminosities, radii to masses: Put everything together
- Stellar lifetime related to mass and luminosity: More mass to burn, longer life (but high luminosity means the star is burning fuel faster, so shortens lifespan)
- lifetime \propto mass/luminosity

