Quiz 02: Solar and Sidereal Day

Answer each of the following questions using your clicker. You must respond using your clicker; papers will not be marked by hand.

You may use your lab notebook and a calculator. Each question is worth $\mathbf{3}$ points, and there is no partial credit. When you have completed both quizzes, please return this quiz paper to me, and you are free to leave.
71. True or false: The sun is directly overhead $\left(\mathrm{Alt}=90^{\circ}\right)$ on $06 / 21$ at precisely noon (12:00) for every location on the Earth.
72. For our location here in Conway, when is the sun is directly overhead $\left(\mathrm{Alt}=90^{\circ}\right)$?
A) At 13:11:44 on 06/21.
C) At 12:08:14 on 12/21.
B) At 13:02:36 on 09/21.
D) At 13:16:50 on 03/21.
E) Never. The sun never actually reaches Alt $=90^{\circ}$ in Conway.
73. True or false: When the sun crosses the meridian on $06 / 21 / 16$, it will appear directly overhead (alt $\cong 90^{\circ}$) if you are standing on the Earth's equator (latitude $=0^{\circ}$).
74. At precisely noon (12:00) on 09/21/16, where is the sun located in the sky? Choose the answer which most closely matches your coordinates.
A) $\mathrm{Az}=121^{\circ} 59^{\prime} 20^{\prime \prime}$
Alt $=70^{\circ} 32^{\prime} 47^{\prime \prime}$
C) $\mathrm{Az}=153^{\circ} 48^{\prime} 45^{\prime \prime}$
Alt $=52^{\circ} 18^{\prime} 33^{\prime \prime}$
B) $\mathrm{Az}=148^{\circ} 26^{\prime} 10^{\prime \prime}$
Alt $=51^{\circ} 03^{\prime} 13^{\prime \prime}$
D) $A z=177^{\circ} 47^{\prime} 22^{\prime \prime}$
Alt $=31^{\circ} 26^{\prime} 33^{\prime \prime}$
75. At what time does the sun cross the meridian on $12 / 21 / 16$? Choose the answer which most closely matches your own data.
A) 12:00. Noon is noon, no matter $\begin{aligned} & \text { what/no matter where! }\end{aligned}$
B) $12: 08: 14$
D) $13: 11: 44$
C) $13: 02: 36$
E) $13: 16: 50$
76. When the sun crosses the meridian on $03 / 21 / 17$, what is its altitude? Choose the answer which matches your observation most closely.
A) $31^{\circ} 29^{\prime}$
B) 45°
C) $55^{\circ} 26^{\prime}$
D) $78^{\circ} 21^{\prime}$
E) 90°
77. How long is one solar day?
A) 23 h 56 m
B) 24 h
C) 24 h 4 m
D) 24 h 56 m
E) 365 d 6 h
78. How long is one sidereal day?
A) 23 h 56 m
B) 24 h
C) 24 h 4 m
D) 24 h 56 m
E) 365 d 6 h
79. A star trail on a photograph is measured to have an angle of $\operatorname{arc} \boldsymbol{\theta}=75.5^{\circ}$. The exposure time of the photograph is known to be $\mathbf{t}=\mathbf{3 0 0}$ minutes. Use this information to calculate the length of a sidereal day in hours. Submit your answer numerically, with a single decimal and no units (XX.x).

$$
\begin{aligned}
\text { day }=(t)\left(\frac{360^{\circ}}{\theta}\right) & =(300 \mathrm{~min})\left(\frac{360^{\circ}}{75.5^{\circ}}\right)=1430 \mathrm{~min} \\
\text { hours } & =\frac{1430 \mathrm{~min}}{60\left(\frac{\min }{\text { hour }}\right)}=23.8 \mathrm{~h}
\end{aligned}
$$

80. Is this experimental value a little longer or a little shorter than the known length of a sidereal day?
A) A little bit longer.
B) A little bit shorter.
