1. Density is defined as
A) mass times weight.
B) weight per square inch.
C) mass per unit volume.
D) weight divided by the planet's radius.
E) size divided by weight.
2. Which of the following are the Jovian planets?
A) Jupiter, Saturn, Uranus, and Neptune only
B) only Jupiter
C) everything past Mars and the asteroid belt
D) Jupiter, Saturn, Uranus, Neptune, and Pluto
E) only Jupiter and Saturn
3. Which planet by itself contains the majority of mass of all the planets?
A) the earth
B) Uranus
C) Saturn
D) Jupiter
E) Venus
4. Planetary orbits
A) are highly inclined to the ecliptic.
B) have the Sun at their exact center.
C) are spaced more closely together as they get further from the Sun.
D) are evenly spaced throughout the solar system.
E) are almost circular, with low eccentricities.
5. Based on its orbit, which planet behaves the least like the others?
A) Mercury
B) Venus
C) Uranus
D) Pluto
E) Mars
6. Which of the following is not icy in composition?
A) the polar cap of Mars
B) most Jovian satellites
C) rings of Saturn
D) asteroids
E) comet nuclei
7. What is true about solar system densities?
A) In differentiated bodies, the denser materials lie near their surfaces.
B) The denser planets lie closer to the Sun.
C) The asteroids all have about the same density.
D) Saturn has the same density as water.
E) Planetary density increases with increasing distance from the Sun.
8. The jovian planets
A) all have rings around their equators.
B) all lie less than 5 AU from the Sun.
C) are all much more dense than any of the terrestrials planets.
D) have satellite systems with less than 4 moons.
A) all spin slower than the earth.
9. The largest asteroid, and probably the only one to be a spherical "world" is
A) Eros.
B) Vesta.
C) Ida.
D) Gaspra.
E) Ceres.
10. How much advance warning did we have of the close approach of asteroid 2002 MN in June 2002?
A) None; it was found three days after its closest approach.
B) several weeks
C) six years
D) three days
E) four hours
11. The Kuiper Belt is found where in the solar system?
A) beyond the orbit of Neptune
B) between the orbits of Jupiter and Uranus
C) among the orbits of the terrestrial planets
D) sixty degrees ahead or behind Jupiter
E) between the orbits of Mars and Jupiter
12. The tail of a comet always points
A) away from the Sun and disappears at perihelion.
B) away from the Sun and becomes longest and brightest at perihelion.
C) in the direction of the comet's motion.
D) toward the Sun and disappears at perihelion.
E) toward Earth and never varies.
13. The Oort Cloud is believed to be
A) the great nebula found just below the belt stars of Orion.
B) a spherical cloud of cometary nuclei far beyond the Kuiper Belt.
C) the circular disk of gas around the Sun's equator from which the planets formed.
D) a grouping of asteroids and meteoroids between the orbits of Mars and Jupiter.
E) a flattened belt of cometary nuclei just beyond the orbit of Neptune.
14. Which of the following does not fall into the category of interplanetary debris?
A) meteoroids
B) comets
C) rings around the jovian planets.
D) Trojan asteroids
E) Kuiper Belt bodies
15. Which of the following have an icy composition?
A) meteorites and most asteroids
B) meteoroids
C) most comets and the rings of Saturn
D) the surface of Mars
E) most asteroids
16. The Trojan asteroids are found
A) closer on average to the Sun than is the earth.
B) orbiting around the Kuiper Belt body Hector.
C) beyond Neptune, with orbits similar to Pluto's.
D) sixty degrees ahead or behind Jupiter, sharing its orbit about the Sun.
E) with the others, between Mars and Jupiter; their red color gives them their name.
17. The most distant objects in our solar system are
A) the jovians.
B) in the Kuiper Belt.
C) in the Oort Cloud.
D) the Trojan asteroids.
E) short period comets.
18. The first spacecraft to land on the surface of an asteroid was named
A) NEAR.
B) Stardust.
C) Giotto.
D) Galileo.
E) Contour.
19. Which statement about asteroids is not true?
A) Their images become blurry due to outgassing as the Sun heats them up.
B) Most stay between the orbits of Mars and Jupiter.
C) They vary considerably in composition, reflectivity, and size.
D) Some have satellites of their own.
E) Earthgrazers can cross not only our orbit, but even those of Venus and Mercury.
20. The most detailed look we've had of an asteroid comes from
A) high-altitude UV spectroscopy.
B) spacecraft sent to an asteroid.
C) ground based radar images.
D) ground based optical images..
E) Earth orbital x-ray images.
21. Before it arrived in orbit about Eros, the NEAR spacecraft visited
A) the asteroid Gaspra.
B) Venus.
C) Mars.
D) the Moon.
E) the asteroid Mithilde.
22. Relative to the comet, the direction of the ion tail tells us
A) the velocity of the comet.
B) where the ecliptic is..
C) the direction the comet is traveling.
D) where the comet came from.
E) the direction of the Sun.
23. Iron meteorites are believed to come from
A) interstellar space.
B) debris from the Kuiper Belt.
C) the crust of a differentiated asteroid, now broken up.
D) a broken up cometary nucleus.
E) the core of a differentiated asteroid, now broken up.
24. Meteor showers are
A) caused by the earth passing near the orbit of an old short-period comet.
B) caused by the earth passing near the orbit of an earthgrazing asteroid.
C) usually annual events, as the orbits again intersect.
D) Both A and B are correct.
E) Both A and C are correct.
25. Meteorites are important because
A) large ones may cause mass extinctions.
B) some come from the Moon and Mars, as well as the astroid belt.
C) they contain pristine material from the solar nebula.
D) All of the above are true.
E) None of the above are true.
26. A meteor is
A) a chunk of space debris that has struck the ground.
B) a streak of light in the atmosphere.
C) an irregularly shaped body, mostly found orbiting between Mars and Jupiter.
D) an icy body with a long tail extending from it.
E) a chunk of space debris orbiting the Earth.
27. A meteorite is
A) an icy body with a long tail extending from it.
B) a chunk of space debris that has struck the ground.
C) an irregularly shaped body, mostly found orbiting between Mars and Jupiter.
D) a chunk of space debris orbiting the Earth.
E) a streak of light in the atmosphere.
28. Long-period comets are believed to originally come from
A) the asteroid belt.
B) the interstellar medium.
C) the Oort cloud.
D) the satellite system of Jupiter.
E) the Kuiper belt.
29. The orbits of most comets
A) lie almost entirely beyond the orbit of Neptune.
B) are open, going out into interstellar space, and thus never return.
C) have perihelions inside the orbit of Mercury.
D) have aphelions in the Kuiper belt.
E) are smaller than the orbit of Comet Halley, with a 76-year period.
30. Objects in the Kuiper belt
A) are the sources of long-period comets.
B) lie beyond the orbit of Neptune and perpendicular to the ecliptic.
C) are dense, like the iron meteorites.
D) lie beyond the orbit of Neptune, and close to the ecliptic.
E) are in random orbits at all inclinations to the ecliptic.
31. Which of these bodies are most likely to break up over time?
A) Kuiper Belt bodies
B) Jovian satellites
C) asteroids in the main belt
D) Trojan asteroids
E) comet nuclei
32. The Manicouagan reservoir near Quebec is an example of
A) cometary debris.
B) a large meteorite impact.
C) Earth's interaction with a comet's dust tail.
D) a volcanic event.
E) a micrometeorite impact.
33. The nucleus of a comet is typically
A) a few kilometers in size, and very low in density.
B) a few hundred kilometers across, and bright, shiny white from its ices.
C) very durable, made of iron.
D) located between the orbits of Mars and Jupiter.
E) a few meters in diameter.
34. If a comet's ion tail is pointing perpendicular to it's direction of travel, the comet is
A) moving away from the Sun.
B) moving closer to the Sun.
C) close to or at apehelion.
D) close to or at perihelion.
E) A comet's tail never points perpendicular to its motion.
35. As the solar nebula contracts it
A) spins faster due to conservation of angular momentum.
B) reverses it direction of rotation.
C) loses angular momentum.
D) flattens out into the ecliptic plane around the Sun's poles.
E) cools due to condensation.
36. In terms of composition
A) the jovian planets are made only of ice, and the terrestrials only of rock.
B) all planets condensed from the same nebula, and have similar compositions.
C) the jovian planets are more like the Sun than are the terrestrials.
D) the Sun is unique, made of nothing but hydrogen and helium.
E) the terrestrials are more like the Sun, since they formed close to it.
37. According to the Solar Nebula theory, planets
A) should be extremely rare.
B) will revolve opposite the star's rotation.
C) should orbit perpendicular to their star's equator.
D) should be randomly oriented to their star's equator.
E) should be a common result of star formation.
38. As a rotating gas cloud contracts, it spins
A) slower due to a decrease in angular momentum.
B) slower due to conservation of angular momentum.
C) at a constant rate.
D) faster due to conservation of angular momentum.
E) faster due to an increase in angular momentum.
39. The larger terrestrial planets have surface features that tend to be
A) younger
B) more cratered
C) older
D) more rocky
E) more icy
40. So far, beyond the solar system the extrasolar planets found have been mostly
A) large jovians with terrestrial-type orbits.
B) brown dwarfs much more massive than Jupiter.
C) terrestrials very close to their star, and transiting its disk.
D) large jovians orbiting solar-type stars about where our jovians are found.
E) terrestrials with very elongated, distant orbits like comets.
41. Most of the extrasolar planets found so far were detected by
A) noting the drop in the star's light as the planet transits its disk.
B) imaging them with the HST in the infrared, where they are easier to stop.
C) detecting the oxygen in their atmospheres spectroscopically.
D) receiving radio transmissions from them, much like Jupiter emits.
E) noting the Doppler shifts of the star as the planet orbits it from side to side.
42. Which statement about extrasolar planets found to date is true?
A) All lie more than 2 A.U. from their star.
B) Most have orbital periods of more than a year.
C) Few are found by Doppler shifts of their stars, due to their gravity.
D) Some are so close to their stars that their periods are just a few days.
E) All are terrestrials, comparable in size to Earth.
