PHYS 1410: College Physics I

Spring 2009
Each question is worth 3 points. The points will be added as bonus to your semester total.

Paul Bunyan is sharpening up his ax. The whetstone has a tangential velocity $\mathbf{v}=\mathbf{1 . 5 0 m} / \mathbf{s}\left(\boldsymbol{\omega}_{\mathbf{o}}=\mathbf{v} / \mathbf{r}\right)$ at the instant shown. The large lumberjack holds the ax steady in place until it is sharp. When he lifts the ax, the stone is still spinning, with $\boldsymbol{\omega}_{\mathbf{f}}=\mathbf{1 . 2 5} \mathbf{r a d} / \mathrm{s}$. It has turned through 15 full revolutions. The stone has a mass $\mathbf{m}=\mathbf{2 5} \mathbf{~ k g}$. (Hints as big as Babe the Blue Ox: Solve IN ORDER from A to E. Carry values DOWN, not UP. This is not a kinematic problem or a N\#2 problem. And ask yourself if there is any translational motion occurring anywhere at any time.)

$$
\begin{array}{cc}
v=1.50 \frac{\mathrm{~m}}{\mathrm{~s}} \\
r=0.610 \mathrm{~m} & \omega_{o}=\frac{v}{r}=\frac{1.50 \frac{\mathrm{~m}}{\mathrm{~s}}}{0.610 \mathrm{~m}}=2.46 \frac{\mathrm{rad}}{\mathrm{~s}} \\
\omega_{f}=1.25 \frac{\mathrm{rad}}{\mathrm{~s}} & \quad \theta=25 \mathrm{~kg} \\
& \theta=15 \mathrm{rev}=30 \pi \mathrm{rad}
\end{array}
$$

A) Treating it as a disk, calculate the initial kinetic energy $\mathbf{K}_{\mathbf{o}}$ of the stone.

$$
\begin{gathered}
K_{o}=\frac{1}{2} I \omega_{o}^{2} \\
K_{o}=\frac{1}{2}\left(\frac{1}{2} m r^{2}\right) \omega_{o}^{2}=\frac{1}{4} m v^{2} \\
K_{o}=\frac{1}{4}(25 \mathrm{~kg})\left(1.50 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=14.1 \mathrm{~J}
\end{gathered}
$$

B) Calculate the final kinetic energy \mathbf{K}_{f} of the stone at the instant when the ax is removed.

$$
\begin{gathered}
K_{f}=\frac{1}{2} I \omega_{f}^{2} \\
K_{f}=\frac{1}{2}\left(\frac{1}{2} m r^{2}\right) \omega_{f}^{2} \\
K_{f}=\frac{1}{4}(25 \mathrm{~kg})(0.610 \mathrm{~m})^{2}\left(1.25 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=3.63 \mathrm{~J}
\end{gathered}
$$

C) Use angular work-energy $\left(\mathrm{K}_{\mathrm{o}}+\mathrm{W}=\mathrm{K}_{\mathrm{f}}\right)$ to determine how much work the ax does on the stone as it comes to rest.

$$
W=K_{f}-K_{o}=3.63 \mathrm{~J}-14.1 \mathrm{~J}=-10.5 \mathrm{~J}
$$

D) Use angular work-energy $\left(\mathrm{K}_{\mathrm{o}}+\tau \theta=\mathrm{K}_{\mathrm{f}}\right)$ to find the torque exerted by the ax on the stone.

$$
\begin{gathered}
K_{o}+\tau \theta=K_{f} \\
14.1 \mathrm{~J}+\tau(30 \pi \mathrm{rad})=3.63 \mathrm{~J} \\
\tau=-0.111 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

E) Use angular impulse-momentum $\left(I \omega_{o}+\tau t=I \omega_{f}\right)$ to determine how much time it takes to stop the stone turning.

$$
\begin{gathered}
I \omega_{o}+\tau t=I \omega_{f} \\
\tau t=\left(\frac{1}{2} m r^{2}\right)\left(\omega_{f}-\omega_{o}\right) \\
(-0.111 \mathrm{~N} \cdot \mathrm{~m}) t=\frac{1}{2}(25 \mathrm{~kg})(0.610 \mathrm{~m})^{2}\left(1.25 \frac{\mathrm{rad}}{\mathrm{~s}}-2.46 \frac{\mathrm{rad}}{\mathrm{~s}}\right) \\
t=50.7 \mathrm{~s}
\end{gathered}
$$

