QUIZ 02: VECTOR ARITHMETIC

- 1. A vector has magnitude A = 55g and direction angle θ = 120°. This vector is found in which quadrant?
 - A) Quadrant I
 - B) Quadrant II
 - C) Quadrant III
 - D) Quadrant IV
- 2. A vector has components $B_x = -350g$ and $B_y = -225g$. This vector is located in which quadrant?
 - A) Quadrant I
 - B) Quadrant II
 - C) Quadrant III
 - D) Quadrant IV
- 3. A vector has magnitude A = 235g and direction angle θ = 120°. Express the *x*-component of the vector

$$A_r = A\cos\theta$$

$$A_x = (235g)\cos 120^\circ = -118g$$

4. A vector has magnitude B = 150g and direction angle $\theta = 240^{\circ}$. Express the *y*-component of the vector.

$$B_y = B\sin\theta$$

$$B_y = (150g)\sin 240^\circ = -130g$$

5. A vector has components $A_x = 145g$ and $A_y = -230g$. Express the *magnitude* of this vector.

$$A = \sqrt{A_x^2 + A_y^2}$$
$$A = \sqrt{(145g)^2 + (-230g)^2} = 272g$$

6. A second vector has components $B_x = -75g$ and $B_y = -125g$. Express the *direction angle* of this vector.

$$\theta = \tan^{-1} \left(\frac{B_y}{B_x} \right)$$
$$\theta = \tan^{-1} \left(\frac{-125g}{-75g} \right) = 239^{\circ}$$

- 7. When the above vectors A (question 5) and B (question 6) are added together, the resultant vector R = A + B will be located in which quadrant?
 - A) Ouadrant I
 - B) Quadrant II
 - C) Quadrant III
 - D) Quadrant IV

Vector **A** has components $A_x = 119g$ and $A_y = 170g$. Vector **B** has components $B_x = -160g$ and $B_y = 40g$. The vectors are added together: A + B = R.

8. What is the *x*-component of the resultant, R_x ?

$$R_x = A_x + B_x = -41.0g$$

9. What is the *y*-component of the resultant, R_y? $R_v = A_v + B_v = 210 \text{g}$ 10. Express he *magnitude* of the resultant vector **R** to three significant digits.

$$R = \sqrt{R_x^2 + R_y^2}$$

$$R = \sqrt{(-41g)^2 + (210g)^2} = 214g$$

- 11. Two vectors are established using the force table. Vector **A** has magnitude A = 150g, $\theta_A = 315^\circ$. Vector **B** has magnitude B = 200g, $\theta_B = 45^\circ$. *To balance the table* (**A** + **B** + **C** = 0), in which quadrant must you place a third vector **C**?
 - A) Quadrant I
 - B) Quadrant II
 - C) Quadrant III
 - D) Quadrant IV
- 12. When the vectors **A** and **B** in question 11 are added together, the resultant vector **R** is located in which quadrant?
 - A) Quadrant I
 - B) Quadrant II
 - C) Quadrant III
 - D) Quadrant IV