PHYS 3345: OPTICS

An interesting selection of achromats

Chapter 06: Chromatic Aberration Design Your Own Achromat

Attached are several spec sheets for different optical glasses, two crowns and a flint, Using the data provided, design a simple Fraunhofer cemented achromat with a focal length of 75cm.

1. Choose a crown and a flint to work with.

$$V_{1d} = \frac{1.51680 - 1}{1.52238 - 1.51432} \qquad V_{2d} = \frac{1.92286 - 1}{1.95452 - 1.91033} \\ V_{1d} = 64.12 \qquad \qquad V_{2d} = 20.88$$

2. Find the power of each lens.

$$D_{1} = \frac{1}{f_{1d}} = \frac{V_{1d}}{f_{d}(V_{1d} - V_{2d})}$$

$$D_{1} = \frac{64.12}{(0.75\text{m})(64.12 - 20.88)}$$

$$D_{1} = +1.976\text{m}^{-1}$$

$$D_2 = \frac{1}{f_{2d}} = \frac{V_{2d}}{f_d (V_{2d} - V_{1d})}$$

$$D_2 = \frac{20.88}{(0.75 \text{m})(20.88 - 64.12)}$$

$$D_2 = -0.643 \text{m}^{-1}$$

3. Assume that the crown is equi-convex.

$$\rho_{1} = \frac{1}{R_{1}} - \frac{1}{R_{2}} = \frac{1}{R_{1}} - \frac{1}{(-R_{1})}$$

$$\rho_{1} = \frac{2}{R_{1}} = \frac{D_{1}}{n_{1d} - 1}$$

$$R_{1} = \frac{2(n_{1d} - 1)}{D_{1}}$$

$$R_{1} = \frac{2(1.51680 - 1)}{1.976}$$

$$R_{1} = 0.523m$$

4. Assume that R_1 of the flint matches the crown, but don't assume that R_2 will be infinity.

$$\rho_2 = \frac{1}{R_1} - \frac{1}{R_2} = \frac{D_2}{n_{2d} - 1}$$

$$\frac{1}{R_2} = \frac{1}{R_1} - \frac{D_2}{n_{2d} - 1}$$

$$R_2 = -0.823 \text{m}$$

$$\frac{1}{R_2} = \frac{1}{(-0.523)} - \frac{-0.643}{(1.92286 - 1)}$$

UCA Department of Physics and Astronomy

Chapter 06: Chromatic Aberration Design Your Own Achromat

$$D_2 = \frac{1}{f_{2d}} = \frac{V_{2d}}{f_d (V_{2d} - V_{1d})}$$

$$D_2 = \frac{20.88}{(0.75 \text{m})(20.88 - 95.02)}$$

$$D_2 = -0.376 \text{m}^{-1}$$

1. Choose a crown and a flint to work with.

Lens 1 (crown): N-FK56 $n_{1C} = 1.43285$ $n_{1F} = 1.43742$ $n_{1G} = 1.43425$ $v_{1G} = \frac{n_{1G} - 1}{n_{1F} - n_{1C}}$ $v_{1G} = \frac{1.43425 - 1}{1.43742 - 1.43285}$ Lens 2 (flint): SF66 $n_{2C} = 1.91033$ $n_{2F} = 1.95452$ $n_{2G} = 1.92286$ $v_{2G} = \frac{n_{2G} - 1}{n_{2F} - n_{2C}}$ $v_{2G} = \frac{n_{2G} - 1}{1.95452 - 1.91033}$ $v_{1G} = 95.02$ $v_{2G} = 20.88$

2. Find the power of each lens.

$$D_{1} = \frac{1}{f_{1d}} = \frac{V_{1d}}{f_{d}(V_{1d} - V_{2d})}$$

$$D_{1} = \frac{95.02}{(0.75 \text{m})(95.02 - 20.88)}$$

$$D_{1} = +1.709 \text{m}^{-1}$$

3. Assume that the crown is equi-convex.

$$R_{1} = \frac{2(n_{1d} - 1)}{D_{1}}$$

$$R_{1} = \frac{2(1.43425 - 1)}{1.709}$$

$$R_{1} = 0.508$$
m

4. Assume that R_1 of the flint matches the crown, but don't assume that R_2 will be infinity.

$$\frac{1}{R_2} = \frac{1}{(-0.508)} - \frac{-0.376}{(1.92286 - 1)}$$

$$R_2 = -0.641$$
m