Fuel Comparison Worksheet (8th ed. of text)

Complete this worksheet by supplying for each fuel, the missing molar masses, % C, H, and O, and the kJ of energy released per gram of fuel that burns. Set your printer to Landscape mode to print this page.

Combustion fuel	Molar mass of fuel	C % (w/w)	H % (w/w)	O % (w/w)	kJ released per mole of fuel burned	kJ released per gram of fuel burned (p 173)
carbohydrates						
C ₆ H ₁₂ O ₆ (glucose)					2800	
$C_{12}H_{22}O_{11}$ (table sugar)					5640	
C ₂ H ₅ OH (ethanol)					1370	
wood		typical carbohydrate		typical carbohydrate		10-15
coal C ₁₃₅ H ₉₆ O ₉ NS						30
oil/natural gas						
C ₈ H ₁₈ (gasoline)					5450	
C ₂ H ₆ (nat. gas)					1560	
CH ₄ (nat. gas)						50 (p 173)
hydrogen, H ₂					240	

Provide answers for the following questions, using your completed table and information from Sec. 4.3-4.9. Defend your answers below with clear reference to information from your completed table above.

1. Why is energy per gram important for comparing fuels?

- 4. Which fuel will produce more H₂O and less CO₂?
- 2. What effect does higher O content have on energy per gram?
- 5. Which fuel is likely to produce undesirable pollutants?

3. Why is energy per mole so different for each fuel?

6. What advantage does a higher O content offer?