For monatomic ions see p 67,98,99 of the text (Chemistry: A Molecular Approach, 4th ed., N. J. Tro 2017). You must know the names, formulas, spellings of all of these polyatomic anions. The red ones are especially important and serve as a basis for other related ions. "Hydrogen" anions $(HPO_4^{2-}, HCO_3^{-}, etc.)$ follow a systematic pattern of naming and charges derived by adding H^+ to the base anion from the table below. | CO ₃ ²⁻ carbonate | NO ₂ ⁻ nitrite
NO ₃ ⁻ nitrate | | | |---|--|--|--| | | PO ₃ ³⁻ phosphite
PO ₄ ³⁻ phosphate | SO ₃ ²⁻ sulfite
SO ₄ ²⁻ sulfate | ClO ⁻ hypo <i>chlor</i> ite
ClO ₂ ⁻ <i>chlor</i> ite
ClO ₃ ⁻ <i>chlor</i> ate
ClO ₄ ⁻ per <i>chlor</i> ate | | | AsO ₃ ³⁻ arsenite
AsO ₄ ³⁻ arsenate | SeO ₃ ²⁻ selenite
SeO ₄ ²⁻ selenate | BrO ⁻ hypobromite
BrO ₂ ⁻ bromite
BrO ₃ ⁻ bromate
BrO ₄ ⁻ perbromate | | | | | IO hypoiodite IO2 iodite IO3 iodate IO4 periodate | | OH hydroxide | CN - cyanide | Cr ₂ O ₇ ²⁻ dichromate | NH ₄ ⁺ ammonium | | SH - hydrogen sulfide | SCN - thiocyanate | MnO ₄ permanganate | Hg ₂ ²⁺ mercurous or mercury(I) | | | | CH₃COO⁻ acetate | |