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INTRODUCTION 
 
Over the last ten years, unified courses in thermal physics, including both 

macroscopic thermodynamics and microscopic statistical mechanics, have 
become increasingly common, particularly at the undergraduate level.  This 
reflects a change from traditional curricula, where entire courses are devoted to 
classical thermodynamics and statistical physics is briefly introduced in survey 
courses in modern physics, with serious study delayed until graduate school.  A 
thorough understanding of statistical and probabilistic is becoming increasingly 
important to chemists and physicists.  This understanding is often developed by 
a serious study of statistical mechanics.  Undergraduate thermal physics 
provides an ideal foundation for such study.  
 

Undergraduate courses in thermal physics do not afford us the time 
follow the languid, historical, phenomenological development of the laws of 
thermodynamics as exemplified in the classic text  by Zemansky (1981).  The 
study of thermodynamics can be abbreviated by using the axiomatic method.  
The most widely accepted axioms are those proposed by Callen (1960).  A 
thorough discussion of these axioms is provided in Callen’s Thermodynamics and 
in the more recent book by Tien and Lienhard (1985).   In the axiomatic approach, 
the extensive or intensive nature of thermodynamic variables is emphasized and 
the relationship to the theory of homogeneous functions is presented.  However, 
this relationship is not often exploited, and an opportunity to provide a 
foundation for the later study of critical point phenomena is lost. 
 

In the following sections the relationship between homogeneous function 
theory and thermodynamics is developed, and, as an illustration, a method for 
calculating the thermodynamic properties of N moles of a material if an equation 
is known for a fixed amount of that material.  The author first became familiar 
with some of these methods in a course based on Callen’s text, and began to use 
them some years later after having developed a course in thermal physics.  An 
extended literature search has failed to find a description of the methods 
described herein. 

 
HOMOGENEOUS FUNCTIONS 

 
 As the properties of homogeneous functions are not well known, they are 
reviewed here.  As is well known, a polynomial of the form  
 

A A x A x A xn
n

0 1 2
2+ + + +...        (1) 

 
is of degree n, if An is not equal to zero.  Thus, the degree of a polynomial is equal 
to the largest exponent in the polynomial.  A polynomial in more than one 
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variable is said to be homogeneous if all of its terms are of the same degree.  For 
example, the polynomial in variables x and y  
 

f x y x xy y( , ) = + +2 22        (2) 
 
is homogeneous of degree 2.  This much is familiar. 
 

The property of homogeneity can be extended to more general functions.  
We shall consider general functions that are homogeneous in terms of functional 
equations.  The functional equations appropriate to the study of homogeneous 
functions were developed by Euler (1755, 1768, 1770).  Aczel (1966, 1969), Davis 
(1962), Stanley (1970), and Widder (1961) provide modern introductions with 
varying degrees of sophistication to the subject of functional equations.   
 

In general, a  function f(x) is a homogeneous function if for all values of 
the parameter λ,   
 
 f x g f x( ) ( ) ( )λ λ=         (3) 
 
The function g is usually called the scaling function in thermodynamics.  The 
function g is not an arbitrary function, it is given by g(λ) = λn, see Stanley (1971). 
Thus a homogeneous function f(x) is one that satisfies 
 
 f x f xn( ) ( )λ λ=         (4) 
 

This definition can be extended to any finite number of variables.  In 
elementary thermodynamics we are usually interested in functions that are 
homogeneous of degree zero or one.  It is possible for multidimensional 
functions to be homogeneous in different degrees for the different variables.  
This is common occurrence in thermodynamics.  For a function in the variables x, 
y, and z; the function  

 f x y z f x y zn( , , ) ( , , )λ λ λ=        (5) 
 
then we say that this function is homogeneous of degree n in x and y and that it is 
not homogeneous in  z.    
 

A  generalization, described by Stanley (1971), is that of a generalized 
homogeneous function.  Generalized homogeneous functions are those that satisfy  
 
 f x y f x ya b( , ) ( , ).λ λ λ=        (6) 
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It is this formulation that is widely used in the analysis of critical point 
phenomena and phase transitions using the static scaling hypothesis. 
 

For clarity in the following presentation, functions homogeneous of 
degree zero and one are treated separately.  The reader will readily observe that 
a single theorem, true for any n, could have been presented.  The method of 
proof for the general theorem is a straightforward extension of the proof of 
Theorem 1 presented below.  The author has found that an initial presentation of 
separate theorems is preferred by most physics students.  The general theorem is 
assigned as a homework problem, and is used by mathematically oriented 
students. 
 

In thermodynamics, variables are classified as either extensive or intensive.  
Extensive variables are those that vary linearly with the size of the system. 
Internal energy, E, is an example of an extensive variable.  Extensive variables 
exhibit the property of being additive over a set of subsystems.  As example:  if a 
system is composed two subsystems, one with energy E1, the second with energy 
E2, then the total system energy is E = E1 + E2.  Other examples of extensive 
variables in thermodynamics are: volume, V, mole number, N, entropy, S, 
enthalpy, H, Helmholtz free energy, F, and the Gibbs free energy, G.   
 

Other thermodynamic variables are independent of the size of the system , 
these variables are referred to as intensive variables.  The  intensive variables 
commonly encountered in thermodynamics are temperature, T,  pressure, p, and 
the chemical potential of the ith component of the system, µi. 

 
THE RELATIONSHIP BETWEEN HOMOGENEOUS FUNCTIONS AND 

EXTENSIVE AND INTENSIVE VARIABLES 
 

Entropy, which is usually an extensive variable in thermodynamics, can 
be expressed as a function of three other extensive variables: internal energy, 
volume, and number of moles.  (Entropy is not always extensive, there are 
exceptions – see Hill (1962), Landsberg (1978), or Robertson (1993) for examples.)  
Thus, we can write entropy as S = S(E,V,N).  An equation of this form contains 
complete thermodynamic information, it is called the fundamental relation in 
thermodynamics.  Since extensive variables depend on the size of the system, 
they can be represented by homogeneous, first degree functions.  Given the 
fundamental relation for entropy, we can write 
 
 ).,,(),,( NVESNVES λλλλ =       (7) 
 
The scaling function λ is arbitrary, and following Callen (1960) we choose λ = 
1/N.  The entropy equation can be rewritten as  
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 S
E
N
V
N N

S E V N( , , ) ( , , ).1
1

=        (8) 

 
Next, we introduce the internal energy per mole as e = E/N, and the volume per 
mole v=V/N, then  
 

S e v s e v N S E V N( , , ) ( , ) ( , , )1 1= =       (9) 
 
or 
 

Ns e v S E V N( , ) ( , , )=         (10) 
 
where s(e,v) is the entropy per mole.  This tells us that the entropy of N moles of a 
substance is N times the entropy per mole of that substance.  The result is well 
known, the method used to derive it can be generalized to provide a result of 
more general usefulness.   
 

The intensive functions of thermodynamics are homogeneous functions of 
degree zero of the extensive variables.  Callen (1960) has shown that the intensive 
parameters of a thermodynamic system can be written as functions of the 
extensive variables; that is T = T(S,V,N), P = P(S,V,N), and µ = µ(S,V,N).  These 
expressions are called equations of state.  Each of these functions is homogeneous 
of degree zero in the specified variables, this follows as each of these can be 
expressed as a first partial derivative of the energy or entropy of the system.  The 
details can be found in Chandler (1987).  For example, the temperature function 
T = T(S,V,N) obeys 
  

T S V N T S V N( , , ) ( , , ).λ λ λ =        (11) 
 
This means that in a composite system in thermal equilibrium, the temperature 
in any sub-subsystem is equal to the temperature of the system. 

 
THEOREMS ON INTENSIVE AND EXTENSIVE FUNCTIONS  

 
We now establish theorems for intensive and extensive functions and then 

discuss some of their thermodynamic applications. 
 
THEOREM 1 (Extensive Functions):  Consider a function f(x,y,z), homogeneous 
of degree one in the variables y and z, .  Let one of the homogeneous variables be 
a non-zero constant, z =z0, then we can write f(x,y,z0) = g(x,y). Then 
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),(),,( 0

0 z
z
yxg

z
zzyxf = .       (12) 

 
PROOF:  Write f(x,y,z) as 
 

 f x y z
z
z
z
z
f x y z( , , ) ( , , )=

0

0 .       (13) 

 
Then, by choosing λ=z0/z, we can rewrite (13), using the fact it is homogeneous in 
the variables y and z, so we have  
 

 f x y z
z
z
f x y

z
z
z
z
z

z
z
f x y

z
z
z( , , ) ( , , ) ( , , )= =

0

0 0

0

0
0     (14) 

 
Now, since z0 is a constant, we can write (14) as 
 

 ),(),,( 0
0

0

z
z
yxgz

z
z
yxf = ,       (15) 

 
thus, we have 
 

 ),(),,( 0

0 z
z
yxg

z
zzyxf =        (16) 

 
which completes the proof. 
 
THEOREM 2 (Intensive Functions) : Consider a function f(x,y,z), that is 
homogeneous degree zero in the variables y and z.  Let one of the homogeneous 
variables be a non-zero constant, z z= 0 , then we can write f(x,y,z0) = h(x,y). Then 
 

),(),,(
z
z
yxhzyxf o= .       (17) 

 
PROOF:  Since in this case f(x, λy, λz) = λ0f(x,y,z) = f(x,y,z),  choosing λ=z0/z , we 
can write f(x,y,z) as  
 

 f x y
z
z
z f x y z( , , ) ( , , )0

0 =        (18) 

 
then  
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 h x y
z
z

f x y z( , ) ( , , )0 =         (19) 

 
which is the theorem. 

 
APPLICATIONS 

 
We will now consider some illustrations of these theorems.  Given that the 

internal energy of a system for three moles of a substance is E = pV2, what is the 
internal energy for N moles?  We want E(p,V,N), using Theorem 1, we can write  
 

 ),(),,( 0

0 N
N

Vpg
N
NNVpE = ,      (20) 

 
where g(p,v) = pV2, and N0 = 3.  Thus, 
 

 
N
pV

N
VPNNVpE

2
2 3))3((

3
),,( == .      (21) 

 
As a second illustration of Theorem 1, consider the entropy of one mole of 

some substance described by the equation   
 

 ( )s R E V C= +ln
3

2 ,        (22) 

 
where C is a constant and R is the ideal gas constant.  To determine the entropy 
for N moles of this material, we use from Theorem 1 to write (22) as  
 

S
N
N

R
EN
N

VN
N

C=
















 +











0

0

3
2

0ln ,      (23) 

 
but N 0 1= ,  so  
 

 ( )S NR E VN NC= +−ln
3

2
5

2 .       (24) 

 
Many similar results could be proved, but these are sufficient to illustrate 
Theorem 1. 
 
 We now illustrate Theorem 2.  Again, let the number of moles, N play the 
role of the coordinate z so that zo = N0.  The van der Waals equation of state for a 
single mole of gas is  
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p
RT
V b

a
V

=
−

− 2 ,        (25) 

 
where a and b are phenomenological constants.  We use Theorem 2 to find the 
equation of state for N moles.  Applying the theorem, we write 
 

 p T V N p T V
N
N

( , , ) ( , )= 0 ,       (26) 

 
so the pressure for N moles is 
 

( )p
RT
V
N

b

a
V
N

NRT
V Nb

N a
V

=
−

− =
−

−2

2

2 ,     (27) 

 
which is, of course, the van der Waals equation for N moles. 
 

DISCUSSION AND CONCLUSIONS 
 

The usefulness of homogeneous functions in thermodynamics has been 
demonstrated.  The use of the theorems presented above circumvents the 
common tendency of students to scale thermodynamic results incorrectly, and 
provides a deeper insight into the meaning of the extensivity of entropy.  The 
theorems presented above also provide a deeper understanding of the 
relationship between the fundamental relation of thermodynamics and the 
equations of state.   
 
 The methods of functional equations are extremely useful in the analysis 
of critical point phenomena, and while not well known, they can, and have been 
applied to other sub-fields of physics.  Some examples are the application to 
relativity Lunn (1919), to communication theory by Shannon (1948), and to 
information theory by Jaynes (1957).  These applications to a number of different 
fields indicate that physicists would benefit from greater familiarity with 
functional equations.  The theorems derived in this paper are useful for 
calculating general results from measurements made on fixed amounts of 
materials.  The methods presented also enable students to develop an 
understanding of the mathematical techniques used in the application of 
homogeneous functions in simple situations; this allows these students to 
concentrate on physics when they meet critical point phenomena, thus affording 
a deeper understanding. 
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