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1 Basic Vector Review

1.1 Unit Vectors

We will denote a unit vector with a superscript caret, thus ˆa denotes a unit vector.

â⇒ |â|= 1

If ~x is a vector in thex-directionx̂ = ~x
|~x| is a unit vector. We will usei, j, and k, or x̂, ŷ, andẑ, or

e1, e2and e3 and a variety of variations without further comment.

1.2 Addition and Subtraction

Addition and subtraction are depicted below

1.3 Scalar Products

~a.~b = |~a||~b|cosθ
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~a.~b =~b.~a since cosθ = cos(−θ)

1.4 Vector Products

|~a×~b|= |~a||~b|sinθ

~a×~b =−~b×~a, Why?

~c =~a×~b, ~c is perpendicular to~a and~b

1.4.1 Geometric Interpretation

Q

P

q

Area of a triangle= 1
2 base×perpendicular height

= 1
2|~Q||~P|sinθ

So

A =
1
2
|~Q×~P|

is the area of a triangle and, accordingly,

|~Q×~P|= the area of a parallelogram.

1.4.2 Area as a vector

Areas can also be expressed as vector quantities, for the parallelogram considered above, we could
have written~A = ~Q×~P. If n̂ is a unit vector normal to a plane of area A, then~A = |~A|n̂ = An̂,
where A is the numerical value of the area.
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1.4.3 Direction of the resultant of a vector product

We have options, in simple cases we often use the right-hand screw rule:

If ~c = ~a×~b, the direction of~c is the direction in which a right-handed screw would advance in
moving from~a to~b.

Or we can use the right hand rule, as seen in the diagram.

A

B

C

Using right hand
for direction of
vector product 

I prefer this version of the right-hand rule - it doesn’t require the contortions of the version typically
found in beginning texts.

1.5 Components and unit vectors

We can write vectors in component form, for example:

~a = axi +ay j +azk,

~b = bxi +by j +bzk,

and

~c = cxi +cy j +czk.

In order to calculate in terms of components, we need to be familiar with the scalar and vector
products of unit vectors.

Consider a right-handed coordinate system with axes labeledx, y, andz, as shown in the diagram.
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x

y

z

If i, j, andk are the unit vectors, we find

i.i = j. j = k.k = 1

and

i. j = i.k = j.k = 0

for the scalar products, and

i× i = j× j = k×k = 0

and

i× j = k, i×k =− j, j×k = i

for the vector products.

Using these results we can compute

~a×~b = (axi +ay j +azk)× (bxi +by j +bzk)
= axbx(i× i)+axby(i× j)+axbz(i×k)
+ aybx( j× i)+ayby( j× j)+aybz( j×k)
+ azbx(k× i)+azby(k× j)+azbz(k×k)

Simplifying,

~a×~b = (axby−aybx)(i× j)︸ ︷︷ ︸
k

+(axbz−azbx)(i×k)︸ ︷︷ ︸
− j

+(aybz−azby)( j×k)︸ ︷︷ ︸
i

,

and finally we have

~a×~b = (aybz−azby)i +(azbx−axbz) j +(axby−aybx)k.

As a mnemonic, this is often written in the form of a determinant. While the mnemonic is useful,
the vector product is not a determinant. (All terms in a determinant must be numbers.)

~a×~b =

∣∣∣∣∣∣
i j k

ax ay az

bx by bz

∣∣∣∣∣∣
Your book goes on to triple products of various types, at this point, I am going to introduce index
notation - a far better way of doing vector calculations.
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2 Index Notation

You will usually find that index notation for vectors is far more useful than the notation that you
have used before. Index notation has the dual advantages of being more concise and more trans-
parent. Proofs are shorter and simpler. It becomes easier to visualize what the different terms in
equations mean.

2.1 Index notation and the Einstein summation convention

We begin with a change of notation, instead of writing

~A = Axi +Ay j +Azk

we write

~A = A1e1 +A2e2 +A3e3 =
3

∑
i=1

Aiei .

We simplify this further by introducing the Einstein summation convention: if an index appears
twice in a term, then it is understood that the indices are to be summed from 1 to 3. Thus we write

~A = Aiei

In practice, it is even simpler because we omit the basis vectorsei and just write the Cartesian com-
ponentsAi . Recall a basis of a vector space is a linearly independent subset that spans (generates)
the whole space. The unit vectorsi, j, andk are a basis of R3.

So we will often denote~A asAi with the understanding that the index can assume the values 1, 2,
or 3 independently.Ai stands for the scalar components(A1,A2,A3); we’ll refer to the vectorAi

even though to get~A we need to calculateAiei .

2.1.1 Examples

ai = bi ⇒ a1 = b1, a2 = b2, a3 = b3

aibi = a1b1 +a2b2 +a3b3

2.2 Summation convention and dummy indices

Consider

~a.~b = axbx +ayby +azbz

this indicates that we can write a scalar product as

~a.~b = aibi
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In the termaibi , an index likei that is summed over is called a dummy index (or more cavalierly
as a dummy variable). The index used is irrelevant - just as the integration variable is irrelevant in
an integral (though in this case the term dummy variable is entirely appropriate).

This means

aibi = a jb j = ambm = a1b1 +a2b2 +a3b3.

A term cannot contain an index more than twice, if a compound calculation would lead to such a
situation, the dummy index should be changed. An index that appears only once in a term is called
a freeor floating index.

For example

aibic j = (a1b1 +a2b2 +a3b3)c j

In an equation, all terms must contain the same free indices, in particular you should note that

aibic j 6= a1bick

If we haveS= AiBi and we wantSCi , as noted above we change the subscripts onA andB because
they are the dummy indices. Do not change the free indices because you risk changing the equation.

Thus,

SCi = A jB jCi .

3 The Kronecker delta or the substitution operator

The Kronecker delta,

δi j = 1 if i = j, = 0 i f i 6= j.

So

δ11 = δ22 = δ33 andδ12 = δ23 = δ13 = 0

We will sometimes find it convenient this result in an array

δi j =

 δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =

 1 0 0
0 1 0
0 0 1

 .

Why is the Kronecker delta slso known as the substitution operator? We can figure this out by
making a calculation.

Considerδ ji ai = δi j ai , let j take on the values 1, 2, and 3. Then we have:

j = 1 : δ11a1 +δ12a2 +δ13a3 = a1
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j = 2 : δ21a1 +δ22a2 +δ23a3 = a2

j = 3 : δ31a1 +δ32a2 +δ33a3 = a3.

From this we can see that

δi j ai = a j .

Thus applying Kronecker delta allows us to drop a repeated index and changes one index into
another.

3.0.1 Further Examples

ArBsCtδst = ArBsCs = ArBtCt

So we see that if two indices are repeated, only one is dropped. We should note the following
obvious results:

δii = 1+1+1 = 3

and

δi j δ jk = δik

4 The permutation symbol or the Levi-Civita tensor

The numbers 1, 2, 3 are in cyclic order if they occur in the order 1,2,3 on a counterclockwise path
starting from 1.

Cyclic Permutations

1   2    3   2    3   1   3   1    2   
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Non-Cyclic Permutations

When the path is clockwise the permutations are non-cyclic.

  3   2    1   1       3      2 2       1      3

Cyclic permutations are sometimes called even, non-cyclic permuations are sometimes called odd.
This idea can be used in the evaluation of vector products. The idea is introduced through the
permutation symbolεi jk .

εi jk = +1 if ijk is a cyclic permutation of 1,2,3

εi jk =−1 if ijk is a non-cyclic permuation of 1,2,3

εi jk = 0 otherwise, i.e. an index is repeated.

So we find

ε123 = ε231 =ε 312= +1,

and

ε132 = ε213 = ε321 =−1,

while

ε122 = ε133 = ε112 = 0.

We should also note the following properties:

εi jk = ε jki = εki j

but when we swap indices

εi jk =−ε jik andεi jk =−εik j .
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4.1 Vector Product in index notation

Recall

~a×~b =

∣∣∣∣∣∣
i j k

ax ay az

bx by bz

∣∣∣∣∣∣
Now consider

ci = εi jka jbk

This is a vector characterized by a single free index i. The indices j and k are dummy indices and
are summed out. We get the three values ofci by letting i = 1,2,3 independently. This is useful
but the method is made more powerful by the methods of the next section.

4.2 Theε−δ identity

εi jkεirs = δ jr δks−δ jsδrk

This identity can be used to generate all the identities of vector analysis, it has four free indices.
To prove it by exhaustion, we would need to show that all 81 cases hold.

Note that theε’s have the repeated index first, and that in theδ’s, the free indices are take in this
order:

1. both second

2. both third

3. one second, one third

4. the other second, the other third

Let’s put this to use by proving what would be a tough identity using ordinary vector methods.
We’ll prove the bac-cab rule.

Proof that ~A× (~B×~C) = (~A.~C)~B− (~A.~B)~C

To prove this, let

~A× (~B×~C) = ~A×~D = ~E

we the convert to index notation as follows: Writing

~B×~C = εi jkB jCk = Di
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then

~A×~D = εrsiAsDi = εrsiAsεi jkB jCk = Er .

Rearranging terms, we have

Er = εrsiεi jkAsB jCk = εirsεi jkAsB jCk,

and using theε−δ identity

Er = (δr j δsk−δrkδs j)AsB jCk,

then

Er = δr j δskAsB jCk−δrkδs jAsB jCk

then using the substitution properties of the knronecker deltas, this becomes

Er = AkBrCk−A jB jCr

= Br(AkCk)−Cr(A jB j)

= ~B(~A.~C)−~C(~A.~B) Q.E.D.
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