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Outline

• FOUR QUESTIONS

• WHAT ARE CHARCTERISTIC FUNCTIONS?

• SINGLE VARIABLE APPLICATIONS OF CHARCTERISTIC 
FUNCTION.

• MULTI-DIMENSIONAL CHARCTERISTIC FUNCTIONS

• RAYLEIGH PROBLEM
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FOUR QUESTIONS

Question 1: Given we know the density for �x is P�x�, what is the distribution for �u � f��x�?

Question2:Givenwe knowthe densityfor�x is Px�x� and the densityfor�y is Py�y�, what is the distributionfor
�u �

�x ��y?

Question 3: Given we know the density for �x is Px�x� and the density for �y is Py�y�, what is the distribution for
�u �

�x�y?

Question 4: Given we know the density for �x is Px�x� and the density for �y is Py�y�, what is the distribution for
�u �

�x
�y

?
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DEFINTIONS OF CHARCTERISTIC 
FUNCTION

MP��� � ej�x
� �

��

� ej�xP�x� dxDEFINTION:

1. M�0� � 1.
2. M����� � M���.
3. |M���| � 1.
4. |M���| � M�0�.

PROPERTIES

ALTERNATIVE DEFINITION:

MP��� � �
��

� ej�xP�x� dx � �
��

� �n�0
� �j�x�n

n! P�x�dx � �n�0
� �j��n

n! �x n �
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DEFINTIONS OF CHARCTERISTIC 
FUNCTION

�xn � � 1
jn

�
nMP���

��
n ���0

�xn � � �
��

� x n P�x�dxTWO METHODS FOR
CALCULATION
OF MOMENTS

differentiation is easier than integration

P�x� � 1
2� ���

� e�j�x MP���dx

Fourier transform pair relationship between the PDF and CF:
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SINGLE VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

one
say �u� f��x�

 would often like to know the density of a new variable, 
 û, that is a function of the old variable:

P�u� � 1
2� ���

� e�j�u Mu��� d�Probability Density Function:

Mu��� � ej�f�x�
� �

��

� ej�f�x�P�x� dxCharacteristic Function:

P�u� � 1
2� ���

� �
��

� ej�f�x�e�j�xP�x� d�dxApply CF to PDF:

P�u� � �
��

�

��u � f�x��P�x�dxPDF for Transformed variable:

This solves the problem for Exercise 1. 
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SINGLE VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

Interpretation of Delta Function of Function

��g�x�� � �i ��x � x i�
1

|g ��xi� |

��f�x� � u� � �i ��x � x i�
1

|f��xi� |

P�u� � �i
P�xi�

|f��xi� |
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SINGLE VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

Translation

(Translation): Let �u � a�x �b, what is P�u�givenwe knowthat thePDFof �x is Px�x�?Solving
for zero of theequation gives

x �
u�b

a
andnotedx �

1
a , then thedistribution is

P�u� � 1
aP�x�|x� u�b

a
�

1
aPx�

u�b
a �   #   
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SINGLE VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

(Square Law Detector): Let �u �
�x 2 , what is P�u� given we know that the PDF of �x is Px�x�?

Answer: Solve for zeros
x1 � u

and
x 2 � � u

note 2xdx � du, then * becomes

P�u� � 1
2 u

Px�u�|x1,x2 �
1

2 u
P� u � � P�� u �   #   

If �x is N�0,��, then the PDF is

Pu�u� � 1
� �2�u�

e�
u

2�2 ��u�.

where � is the unit step function
��x� � 1 �x � 0�

� 0 �otherwise�   #   

Square Law Detector
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SINGLE VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

The coordinate transform ation y � R sin��� � a PDF f � �� � is onto but not one-to-one ov er
interv al ��� ,��. Thus  ref: * has an infinite num ber of zeros. It is m ore conniv ent to determ ine the C F
directly, so the transform ation of the PDF is

M ��� � � �
��

�

e j�R sin �� � f � �� �d� .

The ex ponential can be w ritten as

�
n���

�

J n ��R�e jn�
� e j�R sin �� � ,

so the C F is giv en by

M ��� � � �
n���

�

J n ��R� �
��

�

e jn� f�� �d� � �
n���

�

J n ��R�F�n�;

w hich can be rew ritten as

M � �� � � J 0 ��R� � �
n�1

�

Jn ��R��F�n� � ��1� n F��n� �

w here F�n� is the Fourier transform of the PDF f � ��� ev aluated at � � n. Depending on the problem , the
C F is sufficient, but som etim es it is still useful to k now the PDF. N ow if w e apply the identity (Abram ow itz)

�
��

�

e �j�t J n �t� dt �
2�� j� n T n �� �

�1 � � 2 �
� �1 � |� |�,

w here T n �x � is the n-th order C hebyshev polynom ials, the PDF of the coordinate transform ation is

f y �y� �

a 0 � � n�1
�

�a n � a �n �Tn �
y
R �

� �R 2
� y 2 �

� �1 �
y
R �,   #   

w here a n � �� j� n F�n�.
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

Repeating the same procedure for the single dimensional case
to the multi-dimensional case yields:

P�u,v� � �
��

� �
��

� � � ��u � f�x,y����v � g�x,y��P�x,y� dxdy

This due to Cohen, is sufficient to allow us to solve the problem
of determining many of the two dimensional combinations of
random variables such as those in Exercises 2-4.
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

Let û � f�x�,y�, the CFis

Mu��� � �
��

�

�
��

�

ej�f�x,y� P�x,y� dxdy,

so the density becomes

P�u� � 1
2� ���

�

e�j�uMu��� d�

�
1
2� ���

�

�
��

�

�
��

�

ej��u�f�x,y��P�x,y� dydxd�

integratingout �gives delta functions

P�u� � �
��

�

�
��

�

��u� f�x,y��P�x,y� dx.   # (C)  



13

MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

EXAMPLE:
Translation

Let �z �
�x �

�y, with distributions Px�x� and Py�y� (assuming they are uncorelated), then the
distribution of û which is denoted by Pu�u� is  ref: C 

Pz�z� � �
��

�

�
��

�

��z � x � y�Pxy�x, y� dxdy

� �
��

�

Pxy�x, z � x� dx

� �
��

�

Px�x�Py�z � x� dx (uncorrelated)   #   
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

EXAMPLE:
Multiplication

Let �z �

�x�y, with distribution Pxy�x,y� or distributions Px�x� and Py�y� (assuming they are
uncorelated), then the distribution of û which is denoted by Pz�z� is  ref: C 

Pz�z� � �
��

�

�
��

�

��z� xy�Pxy�x,y� dxdy.

If we note that �i ��x � xi�
1

|f��xi�|
, so

��z� xy� � ��y� z
x �

|x|
so

fz�z� � �
��

� 1
|x| Pxy

z
x ,x dx.   #   
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

EXAMPLE:
Division or Monopulse Ratio

Let �z �
�x
�y

, withdistributionPxy�x,y�or distributions Px�x�andPy�y� (assuming they are
uncorelated), then the distributionof z�which is denoted by Pz�z� is

Pz�z� � �
��

�

�
��

�

��z� x
y �Pxy�x,y� dydx.

If we note that
��z� x

y � � ��y� zx�|x|

so

fz�z� � �
��

�

|x|Pxy�zx,x�dx.   #   
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

X � �i�1
N x� i � �i�1

N âi cos��� i�

Sum of two dimension random amplitudes and phases:

RAYLEIGH PROBLEM

Arose in Scattering off Rough Surfaces, 

Applications in Radar, Sonar, Acoustics, Communications, Physics, etc.
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

INSTANCE OF TRACKING PROBLEM

Transformations from spherical to Cartesian coordinates

x� � �r� � cos �� sin��� �,  

y � �r� � sin �� sin��� �,  

z� � �r�� cos��� �.   # (

x� � r�
2 sin �� � �� � sin �� � ��Rewritten as:

y �
r�
2 cos��� � �� � � cos��� � �� �
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MULTI-VARIABLE APPLICATIONS OF 
CHARCTERISTIC FUNCTION

Then the distribution for z is: f z�z� � �
�1
1 Pr�

z
�
� a 0��n�1

�

�an�a
�n�Tn���

�|�| �1��2�
d�.

fz�z�
(uncorrelated)

� �
��

�

Pz1�z1�Pz2�z1 �z� dz1

� �
��

�

�
�1

1 Pr1�
z1
�1
� a0 ��n�1

�

�an �a�n�Tn��1�

�|�1| �1��1
2�

d�1 �

�
�1

1 Pr2�
z2�z1�z
�2

� a0 ��n�1
�

�an �a�n�Tn��2�

�|�2| �1��2
2�

d�2dz1

  #   

two sum case z � z1 � z2

Case n is obtained by repeated application of Case 2
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Conclusions

• Demonstrated how to use CF to bypass difficulties in computing 
combinations of random variables using a method based on Cohen

• Using Fourier analysis and application of definition of Dirac delta 
function, combined PDF is obtained with considerable simplification

• Motivation engineering applications that occur in radar/sonar 
applications that involve combinations of probability density functions

• Have demonstrated simple method to obtain PDF for different 
combinations of random variables

• Rayleigh problem for i=2 solved which implies general solution for 
case i=n
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