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Outline

FOUR QUESTIONS

WHAT ARE CHARCTERISTIC FUNCTIONS?

SINGLE VARIABLE APPLICATIONS OF CHARCTERISTIC
FUNCTION.

MULTI-DIMENSIONAL CHARCTERISTIC FUNCTIONS

RAYLEIGH PROBLEM



NAVSE FOUR QUESTIONS

Question 1: Given we know the density for x is P(x), what is the distribution for u = f(x)?

Question 2: Given we know the density for X is P, (x) and the density for y is P,,(v), what is the distribution for
u=x+)?

Question 3: Given we know the density for x is P, (x) and the density for y is P, (y), what is the distribution for
u=xy?

Question 4: Given we know the density for X is P, (x) and the density for y is P,,(y), what is the distribution for

u==x<?
y



DEFINTIONS OF CHARCTERISTIC
FUNCTION

DEFINTION: ~ Mp(0) = (™) = [ e™P(x) dx

M) = 1.
M*(=6) = M(0).
M0)] < 1.
M(0)| < M(0).

PROPERTIES

ALTERNATIVE DEFINITION:

Mp©) = [* & P(x) dx = |7 37 L pyde = Y7 D)




DEFINTIONS OF CHARCTERISTIC
FUNCTION

TWO METHODS FOR ~ (x") = | lx” P(x)dx
CALCULATION

0=0
differentiation is easier than integration

Fourier transform pair relationship between the PDF and CF:

P(x) = 2| 7™ Mp(0)dx



SINGLE VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

one would often like to know the density of a new variable,
say U, that 1s a function of the old variable: 7= f{X)

o0

e 7 M.,(0) db

Probability Density Function: P (U) — 217_[

—00

Characteristic Function: M,(0) = <e/ o> )> = Ijo O P(x) dx

Apply CF to PDF: P(u) = = | ZO | : &) o79% P(x) dO dx

PDF for Transformed variable:  P(1) = IZO o(u—f(x))P(x)dx

This solves the problem for Exercise 1.



SINGLE VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

Interpretation of Delta Function of Function

5(g(x)) = 22, 0(x —x)—

g (x)]

5(() ~u) = X, 8x —x )7

P(x;
Pu) = X, 75




SINGLE VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

Translation

(Translation): Let u = ax + b, what is P(u) given we know that the PDF of X is P,(x)? Solving
for zero of the equation gives

and note dx = L, then the distribution is
P = 1P, = 1P (D) #




'""”"‘*;fA SINGLE VARIABLE APPLICATIONS OF
. — CHARCTERISTIC FUNCTION

Square Law Detector

(Square Law Detector): Let il = x°, what is P(u) given we know that the PDF of X is Py(x)?
Answer: Solve for zeros

x; = Ju

and

Xy =—Ju

note 2xdx = du, then * becomes

P(u) = == Py, = —=[P(Ju) + P(~ Ju) ]

=

2Ju 2Ju
If x is N(0,0), then the PDF is
1 _u
Pu(u) = ————e¢ 2 O(u).
o,/ (2ru)

where O is the unit step function

Ox)=1x>0)

=

= 0 (otherwise)




| SINGLE VARIABLE APPLICATIONS OF
- o CHARCTERISTIC FUNCTION

The coordinate transformation y = Rsin(¢p) a PDF f,(¢) is onto but not one-to-one over

interval [—oo,0]. Thus ref: * has an infinite number of zeros. It is more connivent to determine the CF
directly, so the transformation of the PDF is

Mo(w) = [~ elomin®@y, (p)dep.

—0o0

The exponential can be written as

Z Jn (a)R)ell’l(p — e]CUR .\'l‘ll((p)j

n=—0oo

so the CF is given by

Mo(@) = 3 Ju@R) [ e"flp)dp = 3 Ju(@R)F(n);

n=—0o0 n=—00

which can be rewritten as

My(@) = Jo(@R) + D Jy(@R)[F(n) + (=1)"F(-n)]

n=1

where F'(n) is the Fourier transform of the PDF f,(¢) evaluated at ® = n. Depending on the problem, the
CF is sufficient, but sometimes it is still useful to know the PDF. Now if we apply the identity (Abramowitz)

Iw e o], (t) dt = 2(_j)nT”(w)®(1 - |@]),
—0 (1 _ a)Z)

where T, (x) is the n-th order Chebyshev polynomials, the PDF of the coordinate transformation is

[004-§:f4(an+%1m)Tn0%)]
n ), #
Ty (R* = y?) 10

£G) = o - |+

where a, = (—=j)"F(n).



MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

Repeating the same procedure for the single dimensional case
to the multi-dimensional case yields:

Pu,v) = [ [" []6lu—fx,»)]6lv — gx,»)]P(x,y) dxdy

This due to Cohen, 1s sufficient to allow us to solve the problem

of determining many of the two dimensional combinations of
random variables such as those 1n Exercises 2-4.
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MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

Let i1 = f(x,y), the CF'is
MO =[ [ ™ Pxy) dic

so the density becomes

(*C0

P(u) = ziﬂ | 7" M) db

_1rr OuAxy)]
2ﬂ.%j%j:ef IP(x, ) dybedd

integrating out 0 gives delta functions

Py = [ [ olu—fe))IPe) d #(C

12



MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

EXAMPLE:

Translation

Let z = X + y, with distributions P,(x) and P, (y) (assuming they are uncorelated), then the

ribution of i which is denoted by P, (u) is ref: C
P.) = [ [ olz-x-1IPy(x.y) drdy

- [~ ny(x,Z_X) dx

=

_[” P (x)P,(z—x) dx (uncorrelated)
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MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

EXAMPLE:
Multiplication

Let z = Xy, with distribution P, (x,y) or distributions P\ (x) and P,(y) (assuming they are
uncorelated), then the distribution of 1i which is denoted by P-(z) is ref: C

PG = | [ dl=0lPulx) dedy,

If we note thatz o(x —x )l/( )‘

-3

olz—xy] = N

SO

=

@ = : ﬁny(é,x)dx.




Let = = %, with distribution P (X, ) or distributions P.(x) and P,(y) (assuming they are

MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

EXAMPLE:

Division or Monopulse Ratio

uncorelated), then the distribution of z which is denoted by P.(z) is

If we note that

SO

PO = | o= FIPotr) i

Oz %] =8(y—20)ls

£@ = WP

*

15



MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

RAYLEIGH PROBLEM

Sum of two dimension random amplitudes and phases:

Arose 1n Scattering off Rough Surfaces,

Applications 1n Radar, Sonar, Acoustics, Communications, Physics, etc.
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MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

INSTANCE OF TRACKING PROBLEM

Transformations from spherical to Cartesian coordinates

x = (7) Cos(é) sin(¢),

y = (#)sin(0) sin(¢),

Z = (r)cos(o).

Rewritten as: X = %[sin(@ + @) + sin(@ -¢) |

y = %[cos(@ + @) — cos(0 + gb)]



MULTI-VARIABLE APPLICATIONS OF
CHARCTERISTIC FUNCTION

P a0t (@ntas)T(e) |

Then the distribution for z is: /2(2) = _[

two sumecase z = z1 + 2»

mip|[(1-0?)

£0E | PP -2

711§01|\[ _§01

J-o@ j' Prl( )CZO+2:) (an+a—n)T(§Dl):|
-

dpy X

J-l P, (%)[ ay+) (@ +aq)T(@,) ]

- a4 (1 —3)

diprdzy

Case n 1s obtained by repeated application of Case 2
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Conclusions

Demonstrated how to use CF to bypass difficulties in computing
combinations of random variables using a method based on Cohen

Using Fourier analysis and application of definition of Dirac delta
function, combined PDF is obtained with considerable simplification

Motivation engineering applications that occur in radar/sonar
applications that involve combinations of probability density functions

Have demonstrated simple method to obtain PDF for different
combinations of random variables

Rayleigh problem for i=2 solved which implies general solution for
case i=n

19
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