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The Canonical Ensemble

We will develop the method of canonical ensembles by considering a sys-
tem placed in a heat bath at temperature T. The canonical ensemble is the
assembly of systems with fixed N and V. In other words we will consider
an assembly of systems closed to others by rigid, diathermal, imperme-
able walls. The energy of the microstates can fluctuate, the system is kept
in equilibrium by being in contact with the heat bath at temperature T.
Schematically, we can view this ensemble as:

State 1 E1, V, N Bath T

State 2 E2, V, N Bath T

State 3 E3, V, N Bath T

...

State ν Eν, V, N Bath T

The system for which the canonical ensemble is appropriate can be thought
of as a sub-system of the system for which the microcanonical ensemble is
appropriate.
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Bath E0

System Eν

Isolated system with E, V, N fixed.
Basically what we do is to examine one state and consider the rest to be in
the heat bath. Thus the macroscopic system is specified by T, V, and N as
illustrated.

Isolated
Temperature T

V, N

Let the combined energy of the system and the heat bath = E0

The system with V, N will be in one of a variety of microstates E1, E2, . . . , Er.
These energies could be degenerate in some cases, but we assume that they
can be ordered.

E1 ≤ E2 ≤ E3 ≤ . . . ≤ Er ≤ . . .

We’ll select δE so that we select one energy level but several microstates.

Let the system be in a state with energy Er, the energy of the reservoir
is then E0 − Er.

What’s the probability that the system will be in a microstate with energy
Er? When we considered an isolated system, we found the probability of
it being in a macrostate specified by (E, V, N, α) was proportional to the
multiplicity Ω(E, V, N, α). In this situation, we could choose to analyze
the system or the heat bath. It will prove to be efficient to analyze the heat
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bath.

The multiplicity of the heat bath is:

Ω(E0 − Er)

We have an isolated system with two sub-systems, labelling the heat bath
as system 2, we have:

pr = constΩ2(E0 − Er)

The ratio of probabilities for the states Ei, and Ej is

pi

pj
=

Ω2(E0 − Ei)
Ω2(E0 − Ej)

We could write similar expressions for all pairs of levels, if we consider
three

pi

pi
=

Ω2(E0 − Ei)
Ω2(E0 − Ei)

pi

pj
=

Ω2(E0 − Ei)
Ω2(E0 − Ej)

pi

pk
=

Ω2(E0 − Ei)
Ω2(E0 − Ek)

we can add them to give

pi + pj + pk

pi
=

Ω2(E0 − Ei) + Ω2(E0 − Ej + Ω2(E0 − Ek))
Ω2(E0 − Ei)

We can generalize this result to yield

pr =
Ω2(E0 − Er)

∑
i

Ω2(E0 − Ei)

Where the sum is taken over all levels. Next, we rewrite the expression for
pr in terms of the reservoir entropy.
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S = k ln Ω, so S/k = ln Ω, and Ω = eS/k. Using this we write

pr = (constant)× exp
(

S2(E0 − Er)
k

)
With a large reservoir, we can assume that E0 � Er. If the heat bath is

large this inequality holds for all states with a reasonable chance of occur-
ring. Now we’ll expand in a Taylor series about S2(E0). Recall

f (x0 + a) = f (xo) + a
(

d f
dx

)
x=x0

+
1
2!

a2
(

d2 f
dx2

)
x=x0

+ . . .

so
1
k

S2(E0 − Er) =
1
k

S2(E0)−
Er

k
∂S2(E0)

∂E0
+

E2
r

2!k
∂2S2(E0)

∂E2
0

. . .

Now, we know that
∂S2(E0)

∂E
=

1
T

where T is the temperature of the heat bath. Thus, we have

1
k

S2(E0 − Er) =
1
k

S2(E0)−
Er

kT
.

All higher order partial derivatives are zero by assumption of a large heat
bath

∂2S2

∂E2 =
∂

∂E

(
1
T

)
= 0

Now using

pr =
Ω2(E0 − Er)

∑
i

Ω2(E0 − Ei)

and
Ω = eS/k

and substituting

β =
1

kT
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we get

pr =
exp(S2

k − βEr)

∑
i

exp(S2
k − βEi)

=
eS2/ke−βEr

∑
i

eS2/ke−βEi

=
e−βEr

∑
i

e−βEi

pr =
e−βEr

Z

Partition Functions and the Boltzmann Distribu-
tion

In the last equation, I have defined

Z = ∑
i

e−βEi = Sum over States = Zustandsumme = Partition Function

We will also use an alternate definition where the sum is over energy levels
rather than states. In this alternate definition, we let the degeneracy of the
level be g(Ei). Then

Z = ∑
Ei

g(Ei)e−βEi .

The equation pr = e−βEr

Z is called the Boltzmann distribution. The Boltz-
mann distribution gives the probability that is in a particular state when
it is in a heat bath at temperature T. Z plays a central rôle in the study of
systems at fixed T. The term e−βEr is called the Boltzmann factor.

It is now time to combine these ideas with our knowledge of probabil-
ity, recall

<x>= ∑
i

xi f (xi) = ∑
i

pixi

In thermal physics, in the canonical ensemble, the probability distribution
(pi = f (xi) is the Boltzmann distribution, the average is called an ensemble
average.
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Average Energy in the Canonical Ensemble

<E>= ∑
i

piEr =
1
Z ∑

r
Ere−βEr

Let’s simplify this result, consider Z = ∑
r

e−βEr

∂Z
∂β

=
∂

∂β ∑
r

e−βEr

= ∑
r

e−βEr
∂

∂β
(−βEr)

= −∑
r

Ere−βEr

so

<E> =
1
Z ∑

r
Ere−βEr

= − 1
Z

∂

∂β ∑
r

e−βEr

= − 1
Z

∂Z
∂β

<E> = −∂ ln Z
∂β

This is an average over the states of the system that exchange energy with
the reservoir. The fluctuations around this energy are small.

Gibbs Entropy Formula

Consider a general macroscopic system with state labelled 1, 2, 3, . . . , r, . . ..
The probability that a system is in a state r is pr. Without constraints,
∑ pr = 1 is all about the way we can say about the system. The general
definition of entropy is then

S = −k ∑
r

pr ln pr.

6



This is the Gibbs entropy formula. We can deduce this formula for a gener-
alized ensemble. Consider an ensemble of ν replicas of our system. We’ll
assume that each replica has the same probability p2, p2, p3, . . . , pr, . . . of
being in the state i. Provided ν is large enough, the number or systems in
the ensemble in state r is

νr = νpr

The multiplicity Ων for the ensemble with ν1 subsystems in state 1, ν2 sub-
systems in state 2, etc., is the number of ways the distribution can be real-
ized:

Ων =
ν!

ν1!ν2! . . . νr!
Now

Sν = k ln Ων = k ln
ν!

ν1!ν2! . . . νr!

Sν = k ln ν!− k(ln ν1! + ν2! + . . . + νr!)

Recall Stirling’s approximation ln N! = N ln N − N, so

Sν = k(ν ln ν−∑
r

νr ln νr)

But νr = νpr

Sν = kν ln ν− k ∑
r

νpr ln(νpr)

= kν ln ν− kν ∑
r

pr ln(νpr)

= kν ln ν− kν ∑
r

pr ln ν− kν ∑
r

pr ln pr

= kν ln ν− kν ln ν ∑
r

pr − kν ∑
r

pr ln pr

Sν = −k ln ν ∑
r

pr ln pr

But entropy is extensive so the entropy of one system (replica) is

S = Sν = −k ∑
r

pr ln pr

The Gibbs entropy formula is consistent with the Boltzmann entropy for-
mula S = k ln Ω. In an isolated system with energy in the range E to
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E + δE, the number of microstates in the interval is Ω(E, V, N). The prob-
ability of finding the system in one of the microstates is 1/Ω(E, V, N) in
the range and 0 outside the range. So

pr =
1

Ω(E, V, N)
(there are Ω terms in an isolated system)

S = −k ∑
r

pr ln pr = −k ∑
r

pr ln
1
Ω

= k ln Ω ∑
r

pr = k ln Ω

Entropy of a System in a Heat Bath

To find the entropy of a system in a heat bath, we can use the Gibbs entropy
formula and the Boltzmann distribution for pr.

S = −k ∑
r

pr ln pr

and

pr =
e−βEr

Z
.

Combining these expressions, and simplifying

−S
k

= ∑
r

pr ln pr

= ∑
r

e−βEr

Z
ln

(
e−βEr

Z

)
= ∑

r

e−βEr

Z
ln

(
e−βEr

)
−∑

r

e−βEr

Z
ln Z

= ∑
r

e−βEr

Z
(−βEr)−

Z
Z

ln Z

= ∑
r

−βEre−βEr

Z
− ln Z

but, by definition, we have

<E>= ∑
r

Ere−βEr

Z
,
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so we can simplify the above result to yield

−S
k

= −β <E> − ln Z,

and finally we find

S =
<E>

T
+ k ln Z.

We will usually assume that the system energy is well defined and use
<E> and E interchangeably, that is the system’s mean energy (which is an
estimate) and the system’s energy are interchangeable. Our development
of the partition function through its ensemble tells us that Z = Z(T, V, N),
thus S and <E> are also functions of T, V, and N.

Summary

S = −k ∑
r

pr ln pr

pr =
e−βEr

Z

Z = ∑
r

e−βEr

<E>=
1
Z ∑

r
Ere−βEr

<E>= −∂ ln Z
∂β

S =
<E>

T
+ k ln Z = S(T, V, N)

In these expressions, Z and < E >, and as a consequence S are defined
as functions of T, V, and N. Contrast this with an isolated system where
S = S(T, V, N). For a macroscopic system at temperature T, energy fluc-
tuations are negligible — i.e. to <E> . This means that the entropy of a
macroscopic body is a heat bath at temperature T is well defined and is
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equal to that of an isolated body with energy E equal to the mean energy
<E> of the system at temperature T. We can express this as

S(T, V, N) = k ln Ω(<E>, V, N)

For an isolated system, the basic quantities are Ω and S; for a system in
a heat bath, the basic quantities are Z(T, V, N) and F(T, V, N). We have
defined enthalpy, a function useful for studying isolated systems at fixed
pressure. F is a similar thermodynamic quantity, defined as F = E − TS,
useful for analyzing systems in equilibrium with a heat bath at tempera-
ture T, that is systems held at constant temperature. We will now relate
this function to the partition function.

Helmholtz Free Energy, F

If we define F = E− TS, and note that for a macroscopic system E =<E>,
we can write

F = E− TS = −kT ln Z(T, V, N),

and use
S =

<E>

T
+ k ln Z

resulting in
F(T, V, N) =<E> −TS = −kT ln Z.

This concludes the basic development of the partition function and the
canonical ensemble, we will later explore other theoretical developments,
it is now time to look at some examples.
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