A Simple System Analyzed on the Canonical and Microcanonical Ensembles

Stephen R. Addison

April 6, 2003

1 The Problem Statement

Consider a system of N distinguishable, independent particles, each of which can exist in two states separated by an energy ε.

We specify the state of the system, ψ by

$$
\psi=\left(N_{1}, N_{2}, N_{3}, \ldots, N_{N}\right), \quad N_{j}=0 \text { or } 1
$$

where $N_{j}=$ state of the particle j. The energy of a given state is given by

$$
E_{\psi}=\sum_{i=1}^{N} N_{i} \varepsilon
$$

where I have chosen the ground state energy as 0 .

2 Analysis on the Canonical Ensemble

Starting from

$$
\mathrm{Z}=\sum_{\psi} \mathrm{e}^{-\beta E_{\psi}}
$$

and

$$
F=-k T \ln Z
$$

we can write

$$
-\beta F=\ln \sum_{\psi} \mathrm{e}^{-\beta E_{\psi}}
$$

Now, the energy of a given state is given by

$$
E_{\psi}=\sum_{j=1}^{N} N_{j} \varepsilon
$$

then entering this into the expression for the partition function, we get

$$
\mathrm{Z}=\sum_{\psi} \mathrm{e}^{-\beta E_{\psi}}
$$

So

$$
Z=\sum_{N_{1}, N_{2}, \ldots, N_{N}=0 \text { or } 1} \exp \left(-\beta \sum_{i=1}^{N} N_{i} \varepsilon\right) .
$$

We can use $\mathrm{e}^{a+b}=\mathrm{e}^{a} \mathrm{e}^{b}$ to write the rewrite the partition function as

$$
Z=\sum_{N_{1}, N_{2}, \ldots, N_{N}=0 \text { or } 1}\left(\mathrm{e}^{-\beta N_{1} \varepsilon}\right)\left(\mathrm{e}^{-\beta N_{2} \varepsilon}\right) \ldots
$$

or

$$
\mathrm{Z}=\left(\sum_{N_{1}=0 \text { or } 1} \mathrm{e}^{-\beta \varepsilon N_{1}}\right)\left(\sum_{N_{2}=0 \text { or } 1} \mathrm{e}^{-\beta \varepsilon N_{2}}\right) \ldots\left(\sum_{N_{N}=0 \text { or } 1} \mathrm{e}^{-\beta \varepsilon N_{N}}\right) .
$$

We can rewrite this as a product

$$
\mathrm{Z}=\prod_{j=1}^{N} \sum_{N_{j}=0,1} \mathrm{e}^{-\beta \varepsilon N_{j}}
$$

The sum contained in this product can be evaluated easily,

$$
\sum_{N_{j}=0,1} \mathrm{e}^{-\beta \varepsilon N_{j}}=\underbrace{1}_{N_{\mathrm{j}}=0}+\underbrace{\mathrm{e}^{-\beta \varepsilon}}_{N_{\mathrm{j}}=1}
$$

which reduces to

$$
\mathrm{Z}=\left(1+\mathrm{e}^{-\beta \varepsilon}\right)^{N}
$$

Now that we have the partition function, we are in a position to calculate the properties of the system. Recall

$$
<E>=-\frac{\partial \ln Z}{\partial \beta}
$$

and

$$
F=-k T \ln Z(T, V, N)
$$

so

$$
-\beta F=\ln Z
$$

Thus, in the current example we have

$$
-\beta F=\ln \left(1+\mathrm{e}^{-\beta \varepsilon}\right)^{N}=N \ln \left(1+\mathrm{e}^{-\beta \varepsilon}\right)
$$

and

$$
\begin{aligned}
<E> & =-\frac{\partial \ln \mathrm{Z}}{\partial \beta} \\
& =-\frac{\partial}{\partial \beta} N \ln \left(1+\mathrm{e}^{-\beta \varepsilon}\right) \\
& =-\frac{N}{\left(1+\mathrm{e}^{-\beta \varepsilon}\right)} \frac{\partial}{\partial \beta}\left(1+\mathrm{e}^{-\beta \varepsilon}\right) \\
& =\frac{\varepsilon N \mathrm{e}^{-\beta \varepsilon}}{\left(1+\mathrm{e}^{-\beta \varepsilon}\right)} \\
<E> & =\frac{N \varepsilon}{\mathrm{e}^{\beta \varepsilon}+1} .
\end{aligned}
$$

Thus we have

$$
E=E(T)
$$

We can draw some simple conclusions from this expression.
At $T=0, \mathrm{e}^{\beta \varepsilon} \rightarrow \infty \Rightarrow E \rightarrow 0$.
Thus at $T=0$ all particles are in the ground state.
As $T \rightarrow \infty, \mathrm{e}^{\beta \varepsilon} \rightarrow 1$, since $\beta \varepsilon \rightarrow 0$, and $E=N E / 2$.
Thus as $T \rightarrow \infty$ all states are equally likely.

3 Analysis on the Microcanonical Ensemble

Consider the state m, with m upper levels occupied, its multiplicity is the number of ways of choosing m objects from N, the identity is immaterial.

$$
C(N, m)=\Omega(E, N)=\frac{N!}{m!(N-m)!} .
$$

For the state m, we can write
$E=m \varepsilon$, or $m=E / \varepsilon$.
Combining this with $S=k \ln \Omega(E, N)$ and $\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{V, N}$,
We get,

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{V, N}=\left(\frac{\partial(k \ln \Omega)}{\partial E}\right)_{V, N}
$$

or

$$
\frac{1}{k T}=\beta=\left(\frac{\partial(\ln \Omega)}{\partial E}\right)_{V, N}
$$

But $E=m \varepsilon, \varepsilon=$ constant, so $\mathrm{d} E=\varepsilon \mathrm{d} m$, and

$$
\beta=\frac{1}{\varepsilon}\left(\frac{\partial(\ln \Omega)}{\partial m}\right)_{V, N}
$$

where N must be large enough for Ω to be a continuous function of m. We must now relate this to system functions

$$
\left(\frac{\partial(\ln \Omega)}{\partial m}\right)_{V, N}=\frac{\partial}{\partial m} \ln \left(\frac{N!}{m!(N-m)!}\right)_{N}
$$

but $\ln N!=N \ln N-N$, so

$$
\begin{aligned}
\ln \frac{N!}{m!(N-m)!}= & N \ln N-N-[(N-m) \ln (N-m)-(N-m) \\
& +m \ln m-m] \\
= & N \ln N-(N-m) \ln (N-m)-m \ln m \\
\left(\frac{\partial \ln \Omega}{\partial m}\right)_{N}= & 0-\frac{\partial}{\partial m}(N-m) \ln (N-m)-\frac{\partial}{\partial m} \ln m \\
= & \ln (N-m)-\frac{(N-m)}{(N-m)} \frac{\partial(N-m)}{\partial m}-\ln m-\frac{m}{m} \frac{\partial m}{\partial m} \\
= & \ln (N-m)+1-\ln m-1 \\
= & \ln \left(\frac{N-m}{m}\right) \\
= & \ln \left(\frac{N}{m}-1\right)
\end{aligned}
$$

But,

$$
\beta=\frac{1}{\varepsilon}\left(\frac{\partial \Omega}{\partial m}\right)_{N, V}
$$

so

$$
\varepsilon \beta=\ln \left(\frac{N}{m}-1\right)
$$

and

$$
\begin{aligned}
\mathrm{e}^{\varepsilon \beta} & =\frac{N}{m}-1 \\
m & =\frac{N}{1+\mathrm{e}^{\varepsilon \beta}}
\end{aligned}
$$

and finally, using $E=m \varepsilon$ we get the same result that we got earlier by performing the analysis on the canonical ensemble:

$$
E=\frac{N \varepsilon}{1+\mathrm{e}^{\varepsilon \beta}} .
$$

