Equations and outline for first test

Stephen R. Addison

March 32003

```
\(N_{A}=6.022 \times 10^{23} /\) mole.
\(R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} . k=1.381 \times 10^{-23} \mathrm{~J} / K . p V=n R T p V=N k T\)
\(n=N / N_{A}\),
```

$$
\begin{gathered}
\langle E\rangle=\frac{3}{2} N k T \\
p=\frac{1}{3} \frac{N}{V} m\left\langle v^{2}\right\rangle=\frac{2}{3} \times \frac{1}{2} m\left\langle v^{2}\right\rangle \frac{N}{V} \\
p V^{\gamma}=\text { constant } \\
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z \\
\left(\frac{\partial x}{\partial y}\right)_{z}=\frac{1}{\left(\frac{\partial y}{\partial x}\right)_{z}} \\
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
\end{gathered}
$$

Consider f as a function of x, y, and z where x, y and z are related, then

$$
\left(\frac{\partial x}{\partial y}\right)_{f}\left(\frac{\partial y}{\partial z}\right)_{f}\left(\frac{\partial z}{\partial x}\right)_{f}=1 .
$$

The First Law of Thermodynamics:

$$
\triangle U=(\text { Energy input by Heating })+(\text { Work done on system }) .
$$

$$
\triangle U=Q+W
$$

or

$$
\begin{gathered}
\mathrm{d} U=\mathrm{d} Q+\mathrm{d} W . \\
C=\frac{Q}{\triangle T} .
\end{gathered}
$$

$c=C / m, c=C / n$, or $c=C / N$.
For an ideal gas, we can write the average kinetic energy per particle as

$$
\begin{gathered}
\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k T . \\
C_{p}-C_{v}=N k=n R . \\
L=\frac{Q}{m} \\
H=U+p V . \\
C_{p}=\left(\frac{\partial U}{\partial T}\right)_{p}+p\left(\frac{\partial V}{\partial T}\right)_{p}=\left(\frac{\partial H}{\partial T}\right)_{p} . \\
L_{v}=H_{v a p}-H_{l i q .} L_{f}=H_{l i q}-H_{s o l},
\end{gathered}
$$

Basic Probability

If there are several equally likely, mutually exclusive, and collectively exhaustive outcomes to an experiment, the probability of an event E is given by:

$$
P(\mathrm{E} \mid \text { Conditioning Information })=\frac{\text { Number of outcomes favorable to } \mathrm{E}}{\text { Total number of outcomes }} .
$$

If the event cannot be broken down into equally likely events

$$
P(\mathrm{E} \mid \text { Conditioning Information })=\frac{\text { Number of succesful occurences of } \mathrm{E}}{\text { Number of trials }} .
$$

Event not $\mathrm{A} \Rightarrow \mathrm{A}$ does not happen

Event A or B \Rightarrow In an experiment A or B or both occur
A then $\mathrm{B} \Rightarrow$ If in independent successive experiments A occurs in the $1^{\text {st }}$ and B occurs in the $2^{\text {nd }}$.
A, B are disjoint events if it is impossible for both of them to occur simultaneously.

If A, B are independent successive events or experiments:

$$
\begin{gathered}
P(\mathrm{~A} \text { then } \mathrm{B})=P(A) P(B), \\
P(\operatorname{not} \mathrm{E})=1-p(E),
\end{gathered}
$$

and, if A, B are disjoint,

$$
P(\mathrm{~A} \text { or } \mathrm{B})=P(A)+P(B) .
$$

If something can be done n_{1} ways, and something else can be done in n_{2} ways, then the number of ways of doing these things in succession is $n_{1} n_{2}$. This is called Fundamental Principle of counting.

$$
\begin{gathered}
P(n, r)=\frac{n!}{(n-r)!} \\
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}
\end{gathered}
$$

where

$$
P(n, r)=C(n, r) \cdot P(r, r)
$$

$$
\begin{gathered}
P(\text { Macrostate })=\frac{\text { Number of microstates corresponding to macrostate }}{\text { Total number of microstates }} \\
\qquad \begin{array}{c}
P(\text { Microstate })=\frac{1}{\text { Totalnumberofmicrostates }}=\frac{1}{\Omega} \\
S=k \ln \Omega(U, V, N, \alpha) . \\
\frac{1}{T_{i}}=\left(\frac{\partial S_{i}}{\partial U_{i}}\right)_{V_{i}, N_{i}} .
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\frac{p_{i}}{T_{i}}=\left(\frac{\partial S_{i}}{\partial V_{i}}\right)_{U_{i}, N_{i}} \cdot \\
\left(\frac{\partial S_{i}}{\partial N_{i}}\right)=-\frac{\mu_{i}}{T_{i}} \\
T_{i}=\left(\frac{\partial U_{i}}{\partial S_{i}}\right)_{V_{i}, N_{i}} \\
p_{i}=-\left(\frac{\partial U_{i}}{\partial V_{i}}\right)_{U_{i}, N_{i}} \\
\mu_{i}=\left(\frac{\partial U_{i}}{\partial N_{i}}\right)_{S_{i}, V_{i}} \\
d U=T d S-p d V+\mu d N \\
d S=\frac{d U}{T}+\frac{p}{T} d V-\frac{\mu}{T} \\
d U=T d S-p d V+\sum_{j} \mu^{j} d N^{j}
\end{gathered}
$$

$\triangle S_{\text {system }} \geq \frac{\text { Energy transfer by heating }}{T}$.

