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1 Intensive Functions and Extensive Functions

Thermodynamics Variables are either extensive or intensive. To illustrate the dif-
ference between these kings of variables, think of mass and density. The mass
of an object depends on the amount of material in the object, the density does
not. Mass is an extensive variable, density is an intensive variable. In thermo-
dynamics,T’, p, andy are intensive, the other variables that we have wiet§ ,

V, N, H, F, andG are extensive. We can develop some useful formal relation-
ships between thermodynamic variables by relating these elementary properties
of thermodynamic variables to the theory of homogeneous functions.

2 Homogeneous Polynomials and Homogeneous Func-
tions

A polynomial
ap + a1z + asx® + - - + ayz"
is of degreen if a,, # 0. A polynomial in more than one variable is said to be
homogeneous if all its terms are of the same degree, thus, the polynomial in two
variables
z? 4 5xy + 1342

is homogeneousf degree two.
We can extend this idea to functions, if for arbitrary

fz) = g(\) f(z)
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it can be shown that

fAz) = X" f(x)
a function for which this holds is said to be homogeneous of degregethe
variablez. For reasons that will soon become obviouss called the scaling
function. Intensive functions are homogeneous of degree zero, extensive functions
are homogeneous of degree one.

2.1 Homogeneous Functions and Entropy

Consider
S=SU,V,n),

this function is homogeneous of degree one in the varidblds, andn, where
n is the number of moles. Using the ideas developed above about homogeneous
functions, it is obvious that we can write:

S(AU, AV, An) = A'S(U, V,n),

where) is, as usual, arbitrary. We can gain some insight into the properties of
such functions by choosing a particular value forin this case we will choose
A= % so that our equation becomes

S (U, v 1) - lS(U,V,n)
n n n
;

Now, we can definé = u, £ = v andS(u,v,1) = s(u,v), the internal energy,
volume and entropy per mole respectively. Thus the equation becomes

ns(u,v) = S(U,V,n),

and the reason for the tersealing functiorbecomes obvious.

3 The Euler Equation
Consider
UAS, AV, An) = AU(S,V,n)
differentiating with respect td (and changing sides of the equation) this becomes

e (), 50 ), 5 (), %
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which simplifies to

v V) = (%)S * (afAUm)S,nw (a%)”

Recalling that\ is arbitrary, we now choosk = 1, resulting in

U(S,V,n) = a—U S + a—U vV + 8—U n,
oS Vin oV Sim on sv

and recognizing that the partial derivatives in this equations are now just the defi-
nitions of the extensive variablgs p, andn, we can rewrite this as

U=TS —pV + un.

This equation, arrived at by purely formal manipulations, is the Euler equation, an
equation that relates seven thermodynamic variables.

3.1 The relationship betweenz and p

Starting from

U=TS —pV + un.
and using

G=U+pV =TS
we have

G=TS—-pV+pun+pV —-T5 = un.
So for a one component systeth = un, for a j-component system, the Euler
equation is
j
U=TS—pV+> mn;
=1

and so for g-component system

J
G = Z i1
i=1



4 The Gibbs-Duhem Equation

The energy form of the Euler equation
U=TS—pV + un
expressed in differentials is
dU =d(TS) —d(pV) + d(un) = TdS + SAT — pdV — Vdp + pdn + ndp

but, we know that
dU =TdS — pdV + pdn

and so we find
0= S8dT — Vdp + ndpu.

This is the Gibbs-Duhem equation. It shows that three intensive variables are not
independent — if we know two of them, the value of the third can be determined
from the Gibbs-Duhem equation.



