Problems for Class and Homework

Dr. Addison

March 12, 2003

In each of the following, assume that we are dealing with fixed amounts of pure substances so that we can write the fundamental thermodynamic identity as $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$. you will find the following definitions to be useful:

$$
\begin{gathered}
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \quad \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \\
C=\frac{\mathrm{d} Q}{\mathrm{~d} T} \\
C_{p}=\left(\frac{\mathrm{d} Q}{\mathrm{~d} T}\right)_{p}=T\left(\frac{\partial U}{\partial T}\right)_{p}+p\left(\frac{\partial V}{\partial T}\right)_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p} \\
C_{V}=\left(\frac{\mathrm{d} Q}{\mathrm{~d} T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}
\end{gathered}
$$

HW 26. (2) Derive

$$
U=F-T\left(\frac{\partial F}{\partial T}\right)_{V}=-T^{2}\left(\frac{\partial F / T}{\partial T}\right)_{V}
$$

HW 27. (1) Derive

$$
C_{V}=-T\left(\frac{\partial^{2} F}{\partial T^{2}}\right)_{V}
$$

HW 28. (2) Derive

$$
H=G-T\left(\frac{\partial G}{\partial T}\right)_{p}=-T^{2}\left(\frac{\partial G / T}{\partial T}\right)_{p}
$$

(This is called the Gibbs-Helmholtz equation)
HW 29. (1) Derive

$$
C_{p}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{p}
$$

HW 30. (3) Derive the third $T \mathrm{~d} S$ equation

$$
T \mathrm{~d} S=C_{V}\left(\frac{\partial T}{\partial p}\right)_{V} \mathrm{~d} p+C_{p}\left(\frac{\partial T}{\partial V}\right)_{p} \mathrm{~d} V
$$

Show that the three $T \mathrm{~d} S$ equations can be rewritten as
HW 31. (2)

$$
T \mathrm{~d} S=C_{V} \mathrm{~d} T+\frac{\alpha T}{\kappa} \mathrm{~d} V
$$

HW 32. (2)

$$
T \mathrm{~d} S=C_{p} \mathrm{~d} T-V \alpha T \mathrm{~d} P
$$

HW 33. (2)

$$
T \mathrm{~d} S=\frac{C_{V} \kappa}{\alpha} \mathrm{~d} P+\frac{C_{p}}{\alpha V} \mathrm{~d} V
$$

HW 34 (2) Defining the Massieu function F_{m} by the equation $F_{m}=-\frac{U}{T}+S$ show that

$$
\mathrm{d} F_{m}=\frac{U}{T^{2}} \mathrm{~d} T+\frac{p}{T} \mathrm{~d} V .
$$

HW 35 (2) Defining the Planck function F_{p} by the equation $F_{p}=-\frac{H}{T}+S$ show that

$$
\mathrm{d} F_{p}=\frac{H}{T^{2}} \mathrm{~d} T-\frac{V}{T} \mathrm{~d} p
$$

Hw 36 (4) Problem 5-14 (a) to (e).
HW 37 (2) Problem 5-15
HW 38 (3) Problem 5-16
HW 39 (3) Problem 5-23 (a) to (c)

