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In each of the following, assume that we are dealing with fixed amounts of pure substances so that
we can write the fundamental thermodynamic identity as dU = TdS − pdV . you will find the
following definitions to be useful:
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HW 26. (2) Derive

U = F − T

(
∂F

∂T

)
V

= −T 2

(
∂F/T

∂T

)
V

HW 27. (1) Derive
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HW 28. (2) Derive
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(This is called the Gibbs-Helmholtz equation)
HW 29. (1) Derive
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HW 30. (3) Derive the third TdS equation
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Show that the three TdS equations can be rewritten as

HW 31. (2)
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HW 32. (2)
TdS = CpdT − V αTdP

HW 33. (2)
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HW 34 (2) Defining the Massieu function Fm by the equation Fm = −U
T + S show that
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HW 35 (2) Defining the Planck function Fp by the equation Fp = −H
T + S show that
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H
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T
dp.

Hw 36 (4) Problem 5-14 (a) to (e).

HW 37 (2) Problem 5-15

HW 38 (3) Problem 5-16

HW 39 (3) Problem 5-23 (a) to (c)
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