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1 Photons

1.1 Blackbody Radiation

All objects emit electromagnetic radiation, the peak wavelength is a function of
temperature. In most cases the radiation is not in thermal equilibrium with matter.
Consider an opaque enclosure whose walls are maintained at a constant tempera-
tureT . The radiation and walls will reach thermal equilibrium and the radiation
will have definite properties.

To study the properties of this equilibrium radiation we can imagine cutting
a small hole in the enclosure. If the hole is small enough, it will not disturb
the radiation in the cavity. Radiation will be emitted through the hole and this
radiation will have the same properties as the cavity radiation. This radiation will
also have the same properties as the radiation emitted by a perfectly black body at
the same temperature as the enclosureT . Why? A perfectly black body absorbs
all radiation falling on it – the hole behaves in the same way – all incident radiation
will enter the hole.

Thus, the terms cavity radiation and blackbody radiation are synonymous. We
will analyze the situation by treating blackbody radiation as a gas of photons.

1.2 The Partition Function for Photons

Photons are particles of spin one and are bosons, we calculate their properties
without making use of this fact. We will do this for now. We know that we can
superimpose electric and magnetic fields, in other words they obey the principle
of linear superposition. This means that photons do not interact, and we can treat
them as an ideal gas.
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The thermal equilibrium between the cavity radiation and the cavity walls is
produced by the continuous emission and absorption of photons by the atoms
of the cavity walls. This means that the number of photons in the cavity is not
constant — instead, it fluctuates about a mean value that depends onT .

Z =
∑
r

e−βEr

whereEr is the energy of the rth state. We can write that

Er =
∑

i

niεi

where the occupation numbers areni = 0, 1, 2, . . . for all i. So

Z =
∑

n1,n2,...

exp

{
−β

∑
i

niεi

}

There is no constraint on the total number of photons, this means that each of the
occupation numbers assumes all possible values independently of the others, so
rather thanZ(T, V, N) we haveZ(T, V )

Z =
∞∑

n1=0

∞∑
n2=0

. . .
∑

exp

{
−β

∑
i

niεi

}

Z =
∞∑

n1=0

∞∑
n2=0

. . .
∑

e−βn1ε1e−βn2ε2e−βn3ε3 . . .

Z =

(∑
n1

e−βn1ε1

)(∑
n2

e−βn2ε2

)
. . .

(∑
ni

e−βniεi

)
and so we write this as

Z =
∞∏

j=1

∑
nj

e−βnjεj

 .

Let’s examine a single term of this equation. That is consider

∞∑
nj=0

e−βnjεj

nj takes on the values0, 1, 2, . . . ,∞, so we can expand it as

∞∑
nj=0

e−βnjεj = 1 + e−βεj + e−2βεj + e−3βεj + . . .
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Now, if we letx = e−βεj , and we see that we have the geometric series

1 + x + x2 + x3 + . . .

Now

1 + x + x2 + x3 + . . . =
1

1− x
if x < 1.

x = e−βεj =
1

eβεj

(Convince yourselves that this holds, you might useεj = h̄ω.) So we can rewrite
our photon partition function as

Zph(T, V ) =
∞∏

j=1

1

1− e−βεj

In principle this gives us all the physics. To make any further progress, we need
to calculate the mean occupation number, we know how to do this, but we haven’t
actually made the calculation.

1.3 Mean Occupation Number

〈ni〉 =

∑
r nie

−βEr

Z
=

∑
n1,n2,... nie

−β(n1ε1+n2ε2+...)

Z
.

Now consider ∑
nie

−β(n1ε1+n2ε2+...)

we use it and

Zph(T, V ) =
∞∏

j=1

1

1− e−βεj

to evaluate
〈ni〉.

To develop the result, it is useful to start from the first step of our calculation of
the partition function for photons

Z =
∑

n1,n2,...

exp

{
−β

∑
i

niεi

}
=

∑
n1,n2,...

e−β(n1ε1+n2ε2+n3ε3+...).
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Now

− 1

β

(
∂Z

∂εi

)
β,εj

= − 1

β

∂

∂εi

∑
n1,n2,...

e−β(n1ε1+n2ε2+n3ε3+...)

= − 1

β

∑
n1,n2,...

(−βni)e
−β(n1ε1+n2ε2+n3ε3+...)

=
∑

n1,n2,...

nie
−β(n1ε1+n2ε2+n3ε3+...).

And so we can write

− 1

βZ

(
∂Z

∂εi

)
β,εj

=
1

Z

∑
n1,n2,...

nie
−β(n1ε1+n2ε2+n3ε3+...) ≡ ni.

Where the equivalence is obvious from our starting point. Thus we have the result

〈ni〉 = − 1

βZ

(
∂Z

∂εi

)
β,εj

= − 1

β

(
∂ ln Z

∂εi

)
β,εj

At this point we can use the product form for our photon partition function

Zph =
∞∏

j=1

1

1− e−βεj

ln Zph = ln
∞∏

j=1

1

1− e−βεj

=
∞∑

j=1

(ln 1− ln(1− e−βεj))

= −
∞∑

j=1

ln(1− e−βεj)

〈ni〉 = − 1

β

(
∂ ln Z

∂εi

)
β,εj

so

〈ni〉 = − 1

β

∂

∂εi

∞∑
j=1

ln(1− e−βεj)
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we can rewrite this as

〈ni〉 = − 1

β

∂

∂εi

ln(1− e−βεi)

as all the other terms would not contribute to the result. Thus,

〈ni〉 =
(1− e−βεi)−1

β

∂

∂εi

(1− e−βεi)

〈ni〉 =
e−βεi

1− e−βεi
=

1

eβεi − 1

This is the Planck distribution function. It gives us average photon occupancies.

1.4 The Properties of Blackbody Radiation

The energy of a photon isE = hν = h̄ω. We know that the density of states
fuunction ink-space is

f(k)dk =
V k2dk

2π2

= number of states betweenk anddk.

When we are dealing with photons, we need to multiply the density of states
function by 2 because the electromagnetic field has two polarizations. First, we’ll
find the numbers of states betweenω andω + dw. Usingk = 2π/λ, ω = 2πν,
andc = λν, we havek = ω/c and

f(ω)dω =
V ω2

2π2c2

dk

dω
dω.

Now c = ω/k andvg = dω
dk

and we rewrite the density of states function as

f(ω)dω =
V ω2dω

2π2c2vg

.

For a non-dispersive medium (i.e. one in whichc 6= c(ω), vg = c, and

f(ω)dω =
V ω2dω

2π2c3
,
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and finally multiplying by 2 as we are dealing with photons, we arrive at

f(ω)dω =
V ω2dω

π2c3
.

Now, let the number of photons with frequency betweenω andω + dω bedNω

where we can write
dNω = 〈ni〉f(ω)dω

Let the energy in the frequency range betweenω andω + dω bedEω, then

dEω = h̄ωdNω

=
V h̄

π2c3

ω3dω

eβh̄ω − 1
.

The density of statesf(ω)dω depends only on the size of the container. This
means that the photon density and the energy density in the cavity are uniform.
So we write

dEω

V
=

h̄ω3dω

π2c3(eβh̄ω − 1)
= u(ω, T )dω,

where

u(ω, T ) = energy/unit volume/unit frequency range

= spectral density

=
h̄ω3

π2c3(eβh̄ω − 1)
.

This is the Planck radiation law. A plot ofu(ω, T ) against (usually inverse) wave-
length would show a different peak for each temperature.

So for every temperature there is a unique frequency that is the peak emission
frequency. At 6000 K, the peak lies at the edge of the visible spectrum. Starting
from

u(ω, T ) =
h̄ω3

π2c3(eβh̄ω − 1)

we can find the frequency of peak emission by calculating the derivative(
∂u(ω, T )

dω

)
T

= 0

so
∂

∂ω

h̄ω3

π2c3
(eβh̄ω − 1)−1 = 0
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3
h̄ω2

π2c3
(eβh̄ω − 1)−1 +

h̄ω3

π2c3
(−1)(eβh̄ω − 1)−2eβh̄ωβh̄ = 0

3ω2 =
ω3eβh̄ωβh̄

(eβh̄ω − 1)

3(eβh̄ω − 1) = βh̄ωeβh̄ω.

Now, letx = βh̄ω, and note thatω = ωmax, weare locating the maximum. Thus
rewriting, we get

3(ex − 1) = xex.

To find the value ofx satisfying this equation, we can use numerical or graphical
methods.

What value ofx satisfies

3(ex − 1)

ex
= x.

One way to approach this is to guess an answer and iterate, let’s try it with an
initial guess ofx = 3. Then we find

3(e3 − 1)

e3
= 2.8506, this becomes our new guess

= 2.8266

= 2.8824
...

= 2.822.

Thus, our result isx = βh̄ωmax = 2.822 or h̄ωmax

kT
= 2.822. This is the Wien dis-

placement law. You can use it to estimate surface temperature from peak emission
wavelength. It is used to estimate the surface temperatures of stars.

1.5 Total Energy Density of Blackbody Radiation

U(T ) =
E

V
=

∞∫
0

u(ω, T )dω

U(T ) =

∞∫
0

h̄ω3

π2c3(eβh̄ω − 1)
dω
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Let x = βh̄ω, sodx = βh̄dω, then

U(T ) =
h̄

π2c3

1

(βh̄)3

1

βh̄

∞∫
0

x3dx

ex − 1

where
∞∫
0

x3dx

ex − 1
=

π4

15
, a simple contour integral

leading to

U(T ) =
π2k4T 4

15c3h̄3 =
E

V
= aT 4.

This is the Stefan-Boltzmann law, whereσ = c
4
a is the Stefan-Boltzmann con-

stant.

1.6 Photon Entropy

E

V
=

π2k4T 4

15c3h̄3

dE = TdS − pdV + µdN

Let E, V be constant so thatdE = TdS, then

E =
π2k4T 4

15c3h̄3 V

(
∂E

∂T

)
V,N

=
4

15

π2k4V T 3

c3h̄3

so, providedN, V are constants, we can write

dE =
4

15

π2k4V T 3

c3h̄3 dT

dS =
dE

T
=

4

15

π2k4V T 2

c3h̄3 dT

S =
4

15

π2k4V

c3h̄3

∫
T 2dT
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S =
4

45
π2k4V

(
T

ch̄

)3

+ constant.

Now, as we have previously noted, by the strong form of the third law of thermo-
dynamics,limT→0 S = 0 resulting in

S =
4

45
π2k4V

(
T

ch̄

)3

.

From this, we can conclude that a process carried out at constant entropy (called
an isentropicprocess is one for whichV T 3 = constant.

1.7 Radiation Pressure

For an ideal gas ofN particles, each of massm, we can write

pV =
1

3
Nm〈v2〉

where
〈v2〉

1
2 = r.m.s. velocity of the particles

Now, if we letNm = M be the mass of the gas, then

pV =
1

3

M

V
〈c2〉.

Now for a photon gas where all the particles have the same velocityc,

p =
1

3

M

V
c2 =

1

3

E

V
=

1

3

〈E〉
V

=
1

3
U(T )

for a photon gas.

2 Phonons

The energy of elastic waves is quantized – just as the energy of electromagnetic
waves in a cavity is quantized. When we talk about phonons, we are talking about
the allowed vibrational modes in solids. The energies of theselattice vibrations
are quantized because only certain modes of vibration are allowed. Thus, we can
treat elastic vibrations in solids as particles or waves. The energy in a vibrational
mode can be treated as a quantum mechanical oscillator of the same frequency.
We can develop our treatment based on the properties of quantum mechanical
oscillators. Ultimately, we shall calculate heat capacities — before embarking on
those calculations, let’s look at the heat capacity of solids.
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2.1 The heat capacity of solids

When we transfer an amount of heat4Q to raise the temperature of a material by
4T , we define the heat capacity of the material as

lim
4T→0

4Q

4T
= C

or

C =
d−Q

dT
Then using

dE = TdS − pdV whereTdS = d−Q,

we have

Cv = T

(
∂S

∂T

)
v

, dV = 0, so Cv =

(
∂E

∂T

)
v

.

We will now investigate the contributions of crystal lattice vibrations to the heat
capacity of solids. By the heat capacity, we shall usually mean the heat capacity
at constant volume. Let’s review the properties of a representative solid.

• At room temperature, in most cases, the value of the heat capacity is3Nk =
3R per mole= 25 J mol−1deg−1. This result, derived from data is called
the Dulong and Petit law. While derived from data, it can be “justified.”

Consider a crystal consisting ofN identical atoms. Each atom is bound to
its equilibrium position by forces that we can model using springs. (We
introduce the principle of equipartition as an axiom here, but should note
that it can be deduced from statistical mechanics.) The equipartition theo-
rem says that each velocity component (linear or angular) has an average
energy ofkT/2 per molecule associated with it. The number of velocity
components needed to describe the motion is called thenumber of degrees
of freedom.A monatomic gas has 3 degrees of freedom. SoE = 3

2
kT per

molecule or3
2
R per mole.

Now consider a solid, each atom vibrates about an equilibrium position. By
the equipartition theorem, each atom should have an average kinetic energy
of kT

2
, for each of its three vibrational degrees of freedom. In addition, each

atom has potential energy associated with elastic deformation. For simple
harmonic motion, the instantaneous oscillator energy is

E =
1

2
mv2 +

1

2
kx2
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and the average kinetic energy is equal to the average potential energy. In
a crystal lattice, each atom is essentially a three-dimensional harmonic os-
cillator. Provided that the springs are Hooke’s law springs, it can be shown
that:

〈KE〉 = 〈PE〉 =
3

2
kT

so
〈E〉 = 3kT

ForN atoms
〈E〉 = 3NkT

and

Cv =

(
∂E

∂T

)
v

= 3Nk = 3Rmole

this is the Dulong and Petit law.

• At lower temperatures the heat capacity drops markedly and approaches
zero asT 3 in insulators and asT in conductors.

• In magnetic material, there is a large contribution to the heat capacity over
the range of temperatures at which the magnetic moments become ordered.
Why? A change in order⇒ a change in entropy. We know that we can write

Cv =

(
∂E

∂T

)
v

So a change in entropy contributes to a change in heat capacity. Below0.1
K the ordering of nuclear magnetic moments can give rise to very large heat
capacities.

2.2 The quantum mechanical harmonic oscillator

For such an oscillator we write

εs =
(
s +

1

2

)
h̄ω s = 0, 1, 2, . . .

h̄ω/2 is called the zero point energy (zpe), we will often set it to zero since it
doesn’t affect the heat capacity. If a mode is excite to a quantum numbers, we
say that there ares phonons in the mode. If Hooke’s law is applicable, the normal
modes of vibration of lattice atoms are independent. The average energy of a
lattice mode depends only on its frequencyω and the number of phonons in the
modes.
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2.2.1 The partition function for a single oscillator

Z =
∑
r

e−εr/kT =
∞∑

s=0

e−(s+ 1
2
)h̄ω/kT

let h̄ω/kT = x then

Z =
∑

e−(s+ 1
2
)x = e−

x
2

∑
e−sx

The sum is of the form
∑

ys wherey = e−h̄ω/kT , if y < 1 we have a geometric
series,

∑
= 1

1−y
. So

Z =
e−x/2

1− e−x
=

e−h̄ω/2kT

1− e−h̄ω/kT

We can use this result to calculate a variety of properties.

2.2.2 Helmholtz Free energy of an oscillator

F = −kT ln Z =
h̄ω

2
+ kT ln(1− e−h̄ω/kT )

2.2.3 Average oscillator energy

〈E〉 = −∂ ln Z

∂β

Z =
e−βh̄ω/2

1− e−βh̄ω

ln Z = −βh̄ω

2
− ln(1− e−βh̄ω)

so

〈E〉 = −∂ ln Z

∂β

=
h̄ω

2
+

∂

∂β
ln(1− e−βh̄ω)

=
h̄ω

2
+

1

1− e−βh̄ω
h̄ωe−βh̄ω

=
h̄ω

2
+

h̄ω

eβh̄ω − 1
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Now, comparing this withE = (s + 1/2)h̄ω, we see that we can write

E =
(
〈s〉+

1

2

)
h̄ω

where

〈s〉 =
1

eh̄ω/kT − 1
.

We can interpret this as the average occupancy of a photon modeω. As we have
already seen (when we derived it directly for photons) this is the Planck distribu-
tion.

3 The Einstein Model (1907)

This was the first application of quantum theory to solid state physics. In this
model, we treat the system asN oscillators connected by springs in one dimen-
sion. Einstein assumed that all the oscillators oscillate with a common frequency.

The average thermal energy of an oscillator of frequencyω is

E =
h̄ω

2
+

h̄ω

eh̄ω/kT − 1

for N oscillators in one dimension, the average thermal energy is

E = N〈s〉h̄ω, ignoring the ZPE.

Then using

E =
Nh̄ω

eh̄ω/kT − 1

and

Cv =

(
∂E

∂T

)
v

We find

Cv = Nh̄ω
∂

∂T
[eh̄ω/kT − 1]−1

= Nh̄ω(−1)[eh̄ω/kT − 1]−2eh̄ω/kT

(
− h̄ω

kT 2

)

= Nk

(
h̄ω

kT

)2
eh̄ω/kT

(eh̄ω/kT − 1)2
.
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This is for the one-dimensional Einstein solid. In three dimsnsions, we replaceN
ny 3N , since each atom has three degrees of freedom and we find

Cv = 3Nk

(
h̄ω

kT

)2
eh̄ω/kT

(eh̄ω/kT − 1)2
.

How good is this expression? Letx = h̄ω/kT , then

Cv = 3Nk
x2ex

(ex − 1)2
,

we can then examine the behavior of this expression at high and low temperature.

3.1 High Temperature Limit

At high temperatures,

x =
h̄ω

kT
� 1

so let’s examine the termx2ex

(ex−1)2
asx→ 0.

Let

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

so we have
x2(1 + x + x2

2!
+ x3

3!
+ . . .)

(x + x2

2!
+ x3

3!
+ . . .)2

.

This obviously goes to 1 asx → 0. This yields the classical result of Dulong and
Petit,Cv = 3Nk.

3.2 Low temperature limit

In the low temperature limit,x� 1, ex � 1 so

Cv = 3Nk
x2ex

(ex − 1)2
' 3Nkx2ex = 3Nk

(
h̄ω

kT

)2

e−h̄ω/kT .

In this expression,Cv → 0 asT → 0 as required. (The exponential always wins.)
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3.3 Summary

Thus, in the Einstein model, the high temperature behavior is good, the behavior at
T = 0 is good, the low temperature behavior is not very good. While we measure
thatCv ∝ T 3, but in this expression at low temperatureCv ∝ e−h̄ω/kT .

It is customary to introduce the Einstein temperatureΘE, through

x =
h̄ω

kT
=

ΘE

T
,

and we callω = ωE the Einstein frequency. IfT � ΘE, Cv = 3Nk. Einstein
temperatures are properties of the material and are tabulated. IfT � ΘE we are
in the low temperature regime. This model is so simple, it is surprising that it
works at all.

4 The Debye Model, 1912

This model is similar to the Einstein model in that we consider a lattice consisting
of N atoms, the system having3N degrees of freedom corresponding to the3N
coordinates required to specify the positions of the atoms.

The atoms execute complex, coupled motions; the oscillations of such a sys-
tem can be described in terms of the3N normal modes of vibration of the system.
Each mode has its own characteristic frequencyω1, ω2, ω3, . . . , ω3N . The lattice
vibrations are then equivalent to3N independent harmonic oscillators with fre-
quenciesω1, ω2, ω3, . . . , ω3N . If we knew the frequencies, we could immediately
solve the problem. We have shown that the average energy of an oscillator is given
by

〈εi〉 =
h̄ωi

2
+

h̄ωi

eh̄ωi/kT − 1
.

The average energy of the3N equivalent oscillators is then

E =
3N∑
i=1

〈εi〉

The calculation was taken this far by Biot and von Karman, also in 1912. Since
we don’t know the frequencies, we use Debye’s approach.
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4.1 The Debye Approach

Treat the solid as a continuum. We can then consider standing waves in the sold.
We will count the standing waves using the denisty of modes calculation. It could
also be done with the density of states calculation.

4.2 The Density of Modes

As in the density of states, we consider a cube of sideL, a three dimensional
standing electromagnetic wave is specified by

Ex = Ex0 sin
(

nxπx

L

)
sin

(
nyπy

L

)
sin

(
nzπz

L

)
where

nx, ny, nz = 1, 2, 3, . . .

and similar expressions exist for they andz components of the field. The solutions
vanish at

x, y, z = 0, L.

If the ni were zero there would be no wave. Consider light, for any given triplet
ni, there are two polarizations, and on substituting into the wave equation

c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ex =

∂2Ex

∂t2

wherec is the velocity of light, we find

c2π2(n2
x + n2

y + n2
z) = ω2L2.

This determines the frequency of the mode in terms of the triplet of integers
nx, ny, andnz. Defining

n ≡ (n2
x + n2

y + n2
z)

1/2,

and the frequencies are given by

ωn =
nπc

L
.

For cavity radiation, we could use this to write the total energy of photons in a
cavity as

E =
∑
n

〈εi〉 =
∑
n

h̄ωn

eh̄ωn/kT − 1
.
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This sum is taken over all positive tripletsnx, ny, nz, as positive integers are suf-
ficient to describe all the independent standing modes.

We can replace the sum overnx, ny, nz by an integral over the volume element
dnxdnydnz in the mode index space. In other words, we can write

∑
n

(. . .) =
1

8

∞∫
0

4πn2dn(. . .).

If we were making the calculation for photons, we would multiply by two to deal
with the two polarizations. We could complete the calculation to find the energy
density of electromagnetic radiation. (The factor1/8 restricts us to the positive
octant of mode index space, this is similar to our density of states calculation.) In
this instance we are interested in phonons.

For elastic waves, there are three possible polarizations, two transverse and
one longitudinal. Thus for elastic modes, the sum of a quantity over all modes is
given by: ∑

n

(. . .) =
3

8

∫
4πn2dn(. . .),

where the definition ofn is identical to the one arising from photons.

4.3 Density of Modes and the Debye Model

In the Debye model, there are are3N allowed modes. Thus, we want to findnD

such that the total number of modes is3N . We find this by evaluating:

3

8

nD∫
0

4πn2dn = 3N

So
3

8
4π

(
n3

3

)nD

0

= 3N

and

nD =
(

6N

π

)1/3

.

The average energy of an oscillator is

〈E〉 =
h̄ω

2
+

h̄ω

eh̄ω/kT − 1
.
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Now omitting the zero point energy (it doesn’t affectCv),

E =
∑
n

〈εn〉 =
∑ h̄ωn

eh̄ωn/kT − 1

and

E =
3

8

nD∫
0

4πn2dn
h̄ωn

eh̄ωn/kT − 1
.

4.3.1 Evaluation of the Debye Integral

Now ωn = nπc
L

, and we rewrite the energy integral as

E =
3

8

nD∫
0

4πn2dnh̄
nπc

L

1

eh̄nπc/LkT − 1
.

Transforming the integral to one over a dimensionless variable by

x =
πh̄cn

LkT
, xD =

πh̄cnD

LkT

we have

n =
LkTx

πh̄c
, dn =

Lkt

πh̄c
dx.

Therefore,

n3dn =

(
LkT

πh̄c

)4

x3dx

and

E =
3

2

nD∫
0

π2h̄c

L
(n3dn)

1

ex − 1

=
3

2

nD∫
0

π2h̄c

L

(
LkT

πh̄c

)4
x3dx

ex − 1

=
3

2

π2h̄c

L

(
LkT

πh̄c

)4 xD∫
0

x3dx

ex − 1
.

The upper limit of integration is

xD =
πh̄cnD

LkT
=

πh̄cnD

V 1/3kT
,
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since

L3 = V andnD =
(

6N

π

)1/3

.

Then we can write

xD =
h̄c

kT

(
6π2N

V

)1/3

=
ΘD

T

where

ΘD =
h̄c

k

(
6π2N

V

)1/3

= Debye Temperature

The Debye temperature is fixed for a particular temperature - it basically depends
on (N/V )1/3.

4.4 The Debye Model at Low Temperture

Let’s findCv at low temperature. At low temperatures,T � ΘD and soxD � 1.
We can writexD = ∞ here, since beyondx = 10 the integrand is approximately
zero.

From tables we find
∞∫
0

x3dx

ex − 1
=

π4

15
.

Using this in

E =
3

2

π2h̄c

L

(
LkT

πh̄c

)4 xD∫
0

x3dx

ex − 1

we find

E ' 3

2

L3k4T 4

π2h̄3c3

π4

15
.

But

ΘD =
h̄c

k

(
6π2N

V

)1/3

, Θ3
D =

(
h̄c

k

)3
6π2N

V
so

E =
3

2

π4

15
NkT 4 V

6Nπ2

6k3

h̄3c3

=
3

2

π4

15
NkT 4 6

Θ3
d

=
3

5

NkT 4π4

Θ3
D

.
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Then

Cv =

(
∂E

∂T

)
v

yields

Cv =
12

5

NkT 3π4

Θ3
D

' 234Nk
(

T

ΘD

)3

.

In other wordsCv → 0 asT → 0 and at low temperaturesCv ∝ T 3. This is the
DebyeT 3 approximation. At high temperatures the model yields the Dulong and
Petit result. This model is “exact” at low and high temperature and an interpolation
formula in between.

At “sufficiently” low temperatures, theT 3 approximation is good. At such
temperatures only long wavelength acoustic modes are excited. These are just the
modes that can safely be treated as an elastic continuum with macroscopic elastic
constants. The energy of short wavelength modes (for which this approximation
fails) is too high for them to be significantly populated. For actual crystals, the
temperatures for which theT 3 law holds is quite low, typicallyΘD/50. As exam-
plesΘD = 645 K for Si, in fact, let’s look at this column of the periodic table.

Element ΘD (K)
C 2230
Si 645
Ge 374
Sn 200
Pb 105

Note that the heavier atoms have the lowestΘD’s, this is because the velocity
of sound decreases as density increases.

In a later course, you will study optic and acoustic phonons. A common prac-
tice is to model acoustic phonons with the Einstein model being used to model
the optical phonon part of the phonon spectrum. Further discussion is beyond the
scope of our course at this point.1

1If you really want to know more at this point refer to Kittel’sIntroduction to Solid State
Physics
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